Skip to main content

Succession on the Rocky Outcrop Vegetation: A Rupestrian Grassland Scheme

  • Chapter
  • First Online:
Ecology and Conservation of Mountaintop grasslands in Brazil

Abstract

We investigated the nature of the temporal processes involved in the formation of vegetation on the heterogeneous landscape of rocky outcrops on ridge tops in rupestrian grasslands (campos rupestres) , Northeastern Brazil. Relationships were established between spatial patterns and gradual processes of succession and their respective species life-forms. The first plants to occupy the isolated rock are mainly chamaephyte monocotyledons (tolerant to desiccation or epilithic) and hemicryptophytes (with or without rosettes). With time, species with other life-forms and eudicotyledons join them, gradually to go from a solitary spatial distribution on the rock to a more continuous distribution. In the initial steps, droughts and storms are the most intense disturbances . In subsequent steps, due to the continuity of the vegetation and high frequency of fires, fire is the predominant factor. The scheme presented here follows the general pattern described for vegetation in other rocky outcrops, with similar taxonomic and/or functional groups. The simultaneous occurrence of several successional steps in the same area increases the probability that part of the vegetation will remain when confronted with disturbances, and constitutes an important diversity factor in rupestrian grasslands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alves RJV, Kolbek J (2000) Primary succession on quartzite cliffs in Minas Gerais, Brazil. Biol Brat 55:69–83

    Google Scholar 

  • Arbeláez MV, Duivenvoorden JF (2004) Patterns of plant species composition on Amazonian sandstone outcrops in Colombia. J Veg Sci 15:181–188

    Article  Google Scholar 

  • Baumgratz JFA, Souza MLR (1995) Tibouchina Aubl. In: Stannard BL (ed) Flora of the Pico das Almas, Chapada Diamantina, Bahia, Brazil. Royal Botanic Gardens, Kew, pp 480–482

    Google Scholar 

  • Berrío JC, Arbeláez MV, Duivenvoorden JF, Cleef AM, Hooghiemstra H (2003) Pollen representation and successional vegetation change on the sandstone plateau of Araracuara, Colombian Amazonia. Rev Palaeobot Palynol 2538:1–19

    Google Scholar 

  • Biedinger N, Porembski S, Barthlott W (2000) Vascular plants on inselbergs: vegetative and reproductive strategies. In: Porembski S, Barthlott W (eds) Inselbergs. Ecological studies, vol 146. Springer, Heidelberg, pp 117–142

    Google Scholar 

  • Büdel B, Becker U, Follmann G, Sterflinger K (2000) Algae, fungi, and lichens on inselbergs. In: Porembski S, Barthlott W (eds) Inselbergs. Ecological studies, vol 146. Springer, Heidelberg, pp 69–90

    Google Scholar 

  • Burbanck MP, Platt RB (1964) Granite outcrop communities of the piedmont plateau in Georgia. Ecol 45:292–306

    Article  Google Scholar 

  • Conceição AA (2003) Ecologia da vegetação em afloramentos rochosos na Chapada Diamantina, Bahia, Brasil. PhD thesis, Universidade de São Paulo

    Google Scholar 

  • Conceição AA, Giulietti AM (2002) Composição florística e aspectos estruturais de campo rupestre em dois platôs do Morro do Pai Inácio, Chapada Diamantina, Bahia, Brasil. Hoehnea 29:37–48

    Google Scholar 

  • Conceição AA, Orr BJ (2012) Post-fire flowering and fruiting in the caulescent rosette Vellozia sincorana, an endemic plant to the Northeast of Brazil. Acta Bot Bras 26:94–100

    Article  Google Scholar 

  • Conceição AA, Pirani JR (2005) Delimitação de habitats em campos rupestres na Chapada Diamantina: substratos, composição florística e aspectos estruturais. Bol Bot Univ São Paulo 23:85–111

    Google Scholar 

  • Conceição AA, Pirani JR (2007) Diversidade em quatro áreas de campos rupestres na Chapada Diamantina, Bahia, Brasil: espécies distintas, mas riquezas similares. Rodriguésia 58:193–206

    Google Scholar 

  • Conceição AA, Rapini A, Pirani JR, Giulietti AM, Harley R, Silva TRS, Funch R, Santos AKA, Correia C, Andrade IM, Costa JAS, Souza LRS, Andrade MJG, Freitas TA, Freitas AMM, Oliveira AA (2005) Campos rupestres. In: Juncá FA, Funch L, Franca-Rocha W (eds) Biodiversidade e conservação da Chapada Diamantina. Biodiversidade, vol 13. Ministério do Meio Ambiente, Brasília, pp 153–180

    Google Scholar 

  • Conceição AA, Funch LS, Pirani JR (2007a) Reproductive phenology, pollination and seed dispersal syndromes on sandstone outcrop vegetation in the “Chapada Diamantina”, northeast Brazil: population and community analyses. Braz J Bot 30:475–485

    Google Scholar 

  • Conceição AA, Giulietti AM, Meirelles ST (2007b) Ilhas de vegetação em afloramentos de quartzito-arenito no Morro do Pai Inácio, Chapada Diamantina, Bahia, Brasil. Acta Bot Bras 21:335–347

    Article  Google Scholar 

  • Conceição AA, Pirani JR, Meirelles ST (2007c) Floristics, sctructure and soil of insular vegetation in four quartzite-sandstone outcrops of “Chapada Diamantina”, northeast Brazil. Braz J Bot 30:641–655

    Article  Google Scholar 

  • Conceição AA, Alencar TG, Souza JM, Moura ADC, Silva GA (2013) Massive post-fire flowering events in a tropical mountain region of Brazil: high episodic supply of floral resources. Acta Bot Bras 27:847–850

    Article  Google Scholar 

  • Connell JH, Slatyer RO (1977) Mechanisms of succession in natural communities and their role in community stability and organization. Amer Nat 111:1119–1144

    Article  Google Scholar 

  • Drury WH, Nisbet CT (1973) Succession. J Arnold Arb 54:331–368

    Google Scholar 

  • Ellenberg H, Müller-Dombois D (1967) Tentative physiognomic-ecological classification of plant formations of the earth. Ber Geob Inst Rubel Zurich 37:21–55

    Google Scholar 

  • Torquato JR, Fogaça, ACC (1981) Correlação entre o Supergrupo Espinhaço no Brasil, o Grupo Chela em Angola e as Formações Nasib e Khoabendus da Namíbia. Anais do simpósio sobre o Craton do São Francisco e suas faixas marginais. Sociedade Brasileira de Geologia - Núcleo da Bahia, coordenação da produção mineral, pp 87–99

    Google Scholar 

  • Giulietti AM, Queiroz LP, Harley RM (1996) Vegetação e flora da Chapada Diamantina, Bahia. Anais 4a reunião especial da SBPC, Feira de Santana, Bahia, p 144–156

    Google Scholar 

  • Giulietti AM, Pirani JR, Harley RM (1997) Espinhaço Range Region, Eastern Brazil. In: Davis SD, Heywood VH, Herrera-Macbryde O, Villa-Lobos J, Hamilton AC (eds) Centres of plant diversity. A guide and strategy for their conservation, vol 3. The Americas. IUCN Publication Unity, Cambridge, pp 397–404

    Google Scholar 

  • Glenn-Lewin DC, van der Maarel E (1992) Patterns and processes of vegetation dynamics. In: Glenn-Lewin DC, Peet RK, Veblen TT (eds) Plant Succession: theory and prediction. Chapman & Hall, Cambridge, pp 11–59

    Google Scholar 

  • Grubb PJ (1987) Some generalizing ideas about colonization and succession in green plants and fungi. In: Gray AJ, Crawley MJ, Edwards PJ (eds) Colonization, succession and stability. Blackwell, London, pp 81–102

    Google Scholar 

  • Hambler DJ (1964) The vegetation of granitic outcrops in western Nigeria. J Ecol 52:573–594

    Article  Google Scholar 

  • Harley RM (1995) Introduction. In: Stannard BL (ed) Flora of the Pico das Almas, Chapada Diamantina, Bahia, Brazil. Royal Botanic Gardens, Kew, pp 1–42

    Google Scholar 

  • Houle G (1990) Species-area relationship during primary succession in granite outcrop plant communities. Amer J Bot 77:1433–1439

    Article  Google Scholar 

  • Houle G, Phillips DL (1989) Seed availability and biotic interaction in granite outcrop plant communities. Ecol 70:1307–1316

    Article  Google Scholar 

  • Ibisch PL, Rauer G, Rudolph D, Barthlott W (1995) Floristic, biogeographical, and vegetational aspects of Pre-Cambrian rock outcrops (inselbergs) in eastern Bolivia. Flora 190:299–314

    Google Scholar 

  • Jacobi CM, Carmo FF (2011) Life-forms, pollination and seed dispersal syndromes in plant communities on ironstone outcrops, SE Brazil. Acta Bot Bras 25:395–412

    Article  Google Scholar 

  • Jacobi CM, Carmo FF, Vincent RC, Stehmann JR (2007) Plant communities on ironstone outcrops: a diverse and endangered Brazilian ecosystem. Biodiv Cons 16:2185–2200

    Article  Google Scholar 

  • Kolbek J, Alves RJV (2008) Impacts of cattle, fire and wind in rocky savannas, southeastern Brazil. Acta Univ Carol Biol 22:111–130

    Google Scholar 

  • Le Stradic S, Buisson E, Fernandes GW (2015) Vegetation composition and structure of some neotropical mountain grasslands in Brazil. J Mt Sci 12:864–877

    Article  Google Scholar 

  • Lüttge U (1997) Physiological ecology of tropical plants. Springer, Heidelberg

    Book  Google Scholar 

  • McCormick JF, Ariel EL, Sharitz RR (1974) Experimental analysis of ecosystems. In: Strain BR, Billings WD (eds) Vegetation and environment. The Hague, Netherlands, pp 151–179

    Google Scholar 

  • Meirelles ST, Mattos EA, Silva AC (1997) Potential desiccation tolerant vascular plants from Southeastern Brazil. Pol J Environ Stud 6:17–21

    Google Scholar 

  • Meirelles ST, Pivello VR, Joly CA (1999) The vegetation of granite rock outcrops in Rio de Janeiro, Brazil, and the need for its protection. Environ Cons 26:10–20

    Article  Google Scholar 

  • Messias MCTB, Leite MGP, Meira-Neto JAA, Kozovits AR (2011) Life-form spectra of quartzite and itabirite rocky outcrops sites, Minas Gerais, Brazil. Biota Neotrop 11:255–268

    Article  Google Scholar 

  • Messias MCTB, Leite MGP, Meira-Neto JAA, Kozovits AR, Tavares R (2013) Soil-vegetation relationship in quartzite and ferruginous Brazilian rocky outcrops. Folia Geobot 48:509–521

    Article  Google Scholar 

  • Michelangeli FA (2000) Species composition and species-area relationships in vegetation isolates on the summit of sandstone mountain in southern Venezuela. J Trop Ecol 16:69–82

    Article  Google Scholar 

  • Moreira AAN, Camelier C (1977) Relevo. Geografia do Brasil, IBGE, Rio de Janeiro

    Google Scholar 

  • Neves SPS, Conceição AA (2010) Campo rupestre recém-queimado na Chapada Diamantina, Bahia, Brasil: plantas de rebrota e sementes, com espécies endêmicas na rocha. Acta Bot Bras 24:697–707

    Article  Google Scholar 

  • Nimer N (1989) Climatologia do Brasil. IBGE, Rio de Janeiro

    Google Scholar 

  • Oliveira RF, Coimbra AFF, Silva ZL (1975) Sobre litosere: algumas espécies para revestimento de encostas rochosas. Bras Florest 6:3–18

    Google Scholar 

  • Oosting HJ, Anderson LE (1937) The vegetation of a barefaced cliff in western North Carolina. Ecol 18:280–292

    Article  Google Scholar 

  • Peet KR (1992) Community structure and ecosystem function. In: Glenn-Lewin DC, Peet RK, Veblen TT (eds) Plant Succession: theory and prediction. Chapman & Hall, Cambridge, pp 103–151

    Google Scholar 

  • Pidgeon IM (1940) The ecology of the central coastal area of New South Wales. III. Types of primary succession. Proc Linn Soc NSW 65:221–249

    Google Scholar 

  • Porembski S (2000) Biodiversity of terrestrial habitat islands—the inselberg evidence. In: Porembski S, Barthlott W (eds) Inselbergs. Ecological studies, vol 146. Springer, Heidelberg, pp 507–514

    Google Scholar 

  • Porembski S, Barthlott W (1997) Seasonal dynamics of plant diversity on inselbergs in the Ivory Coast (West Africa). Bot Acta 110:466–472

    Article  Google Scholar 

  • Porembski S, Becker U, Seine R (2000) Islands on islands: habitats on inselbergs. In: Porembski S, Barthlott W (eds) Inselbergs. Ecological studies, vol 146. Springer, Heidelberg, pp 49–67

    Google Scholar 

  • Renvoize SA (1984) The grasses of Bahia. Royal Botanic Gardens, Kew

    Google Scholar 

  • Ribeiro KT, Medina BMO (2002) Estrutura, dinâmica e biogeografia das ilhas de vegetação sobre rocha do Planalto do Itatiaia, RJ. Boletim do Parque Nacional do Itatiaia 10:11–82

    Google Scholar 

  • Ribeiro PL, Rapini A, Silva UCS, Konno TUP, Damascena LS, Berg C (2012) Spatial analyses of the phylogenetic diversity of Minaria (Apocynaceae): assessing priority areas for conservation in the Espinhaço Range, Brazil. Syst Biodivers 10:317–331

    Article  Google Scholar 

  • Ribeiro PL, Rapini A, Damascena LS, Berg C (2014) Plant diversification in the Espinhaço Range: insights from the biogeography of Minaria (Apocynaceae). Taxon 63:1253–1264

    Article  Google Scholar 

  • Safford HD (2001) Brazilian Páramos. III. Patterns and rates of postfire regeneration in the campos de altitude. Biotropica 33:282–302

    Google Scholar 

  • Sarthou C, Villiers J (1998) Epilithic plant communities on inselbergs in French Guiana. J Veg Sci 9:847–860

    Article  Google Scholar 

  • Shure DJ, Ragsdale L (1977) Patterns of primary succession on granite outcrop surfaces. Ecol 58:993–1006

    Article  Google Scholar 

  • Simon MF, Pennington T (2012) Evidence for adaptation to fire regimes in the tropical savannas of the Brazilian Cerrado. Int J Plant Sci 173:711–723

    Article  Google Scholar 

  • Van der Maarel E (1988) Vegetation dynamics: patterns in time and space. Vegetatio 77:7–19

    Article  Google Scholar 

  • Weaver J, Clements FE (1938) Plant ecology. McGraw-Hill, New York

    Google Scholar 

  • Westhoff V, van der Maarel E (1978) The Braun-Branquet approach. In: Whittaker RH (ed) Classification of plant communities. Dr W, Junk, Boston, pp 287–399

    Chapter  Google Scholar 

  • Wiser SK, Peet RK, White PS (1996) High-elevation rock outcrop vegetation of the southern Appalachian Mountains. J Veg Sci 7:703–722

    Article  Google Scholar 

  • Zappi DC, Lucas E, Stannard B, Lughadha EN, Pirani JR, Queiroz LP, Atkins S, Hind DJN, Giulietti AM, Harley RM (2003) Lista das plantas vasculares de Catolés, Chapada Diamantina, Bahia, Brasil. Bol Bot Univ São Paulo 21:345–398

    Google Scholar 

Download references

Acknowledgements

We thank FAPESP for a scholarship granted to the first author, to CNPq for support to the first and second authors, and to IBAMA for issuing a license for collection at Chapada Diamantina National Park. To F.R. Scarano, J.A.N. Conceição, G.W. Fernandes, and to Elise Buisson for reading the manuscript and for suggestions, and to the botanists that helped with the identification of the plants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abel A. Conceição .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Conceição, A.A., Pirani, J.R. (2016). Succession on the Rocky Outcrop Vegetation: A Rupestrian Grassland Scheme. In: Fernandes, G. (eds) Ecology and Conservation of Mountaintop grasslands in Brazil. Springer, Cham. https://doi.org/10.1007/978-3-319-29808-5_9

Download citation

Publish with us

Policies and ethics