Skip to main content

Rupestrian Grassland Vegetation, Diversity, and Origin

  • Chapter
  • First Online:
Ecology and Conservation of Mountaintop grasslands in Brazil

Abstract

Rupestrian grasslands (campos rupestres) are tropical landscapes consisting of a mosaic of herbaceous and shrubby physiognomies on quartzite or ironstone that occur in highlands , usually above 900 m. These landscapes encompass a high diversity of habitats , under different environmental conditions, such as on rock outcrops dominated by desiccation-tolerant species, as well as grasslands and shrublands dominated by resprouter species. Therefore, water availability is one of the most significant selective pressures on rock outcrops, while fire is more important on grasslands and shrublands. Poaceae and Velloziaceae are the two dominant plant families in terms of cover area. There is predominance of hemicryptophytes, chamaephytes, and phanerophytes. Autochory is the main dispersal syndrome and contributes to high plant endemism. Floristic and vegetation structural patterns are affected by geology, geography, habitat, and disturbance. Rupestrian grasslands are Old Stable Landscapes and high specialization, phylogenetic conservatism, and low dispersal ability characterize most lineages in these landscapes. Rather than plant refuges during the warmer and moister Pleistocene interglacial periods, highlands have probably worked as refuges for fire-sensitive lineages since the expansion of fire-prone savannas (cerrados) in the late Tertiary. Most lineages from these mountain ranges then diversified during the Quaternary as rupestrian grasslands were finely fragmented by fire-prone landscapes. The fragmented and rich biodiversity in rupestrian grasslands is naturally vulnerable to anthropogenic disturbances. Therefore, protected areas even if small, scattered along the whole landscape, will help to protect them for a while. However, areas suitable for rupestrian grasslands will probably be greatly reduced in the next few decades as seasonality increases. This scenario calls for immediate ex situ conservation measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alves RJV, Kolbek J (2009) Summit vascular flora of Serra de São José, Minas Gerais, Brazil. Check List 5:35–73

    Google Scholar 

  • Antonelli A, Verola CF, Parisod C, Gustafsson ALS (2010) Climate cooling promoted the expansion and radiation of a threatened group of South American orchids (Epidendroideae: Laeliinae). Biol J Linn Soc 100:597–607

    Article  Google Scholar 

  • Apg III (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Biol J Linn Soc 161:105–121

    Article  Google Scholar 

  • Barbosa NPU, Fernandes GW, Carneiro MAA, Junior LAC (2010) Distribution of non-native invasive species and soil properties in proximity to paved roads and unpaved roads in a quartzitic mountainous grassland of southeastern Brazil (rupestrian fields). Biol Inv 12:3745–3755

    Article  Google Scholar 

  • Beerling DJ, Osborne CP (2006) The origin of the savanna biome. Glob Chan Biol 12:2023–2031

    Article  Google Scholar 

  • Bitencourt C, Rapini A (2013) Centres of endemism in the Espinhaço Range: identifying cradles and museums of Asclepiadoideae (Apocynaceae). Syst Biodiv 11:525–536

    Article  Google Scholar 

  • Bitencourt C, Rapini A, Damascena LS, De Marco Junior P (2016) The worrying future of the endemic flora of a tropical mountain climate change. Flora 218:1–10

    Google Scholar 

  • Brito JC (2011) Efeitos do fogo sobre a vegetação em duas áreas de campo rupestre na Chapada Diamantina, Bahia, Brasil. MSc Dissertation, Universidade Estadual de Feira de Santana

    Google Scholar 

  • Carmo FF, Jacobi CM (2012) The cangas of the Iron Quadrangle. In: Jacobi CM, Carmo FF (eds) Floristic diversity of the quadrilátero ferrífero cangas. Ed. IDM, Belo Horizonte, pp 14–30

    Google Scholar 

  • Carmo FF, Jacobi CM (2013) Canga vegetation in the Iron Quadrangle, Minas Gerais: characterization and phytogeographical context. Rodriguésia 64:527–541

    Article  Google Scholar 

  • Carvalho Filho A, Curi N, Shinzato E (2010) Relações solo-paisagem no Quadrilátero Ferrífero em Minas Gerais. Pesq Agropec Bras 45:903–916

    Article  Google Scholar 

  • Conceição AA, Giulietti AM (2002) Composição florística e aspectos estruturais de campo rupestre em dois platôs do Morro do Pai Inácio, Chapada Diamantina, Bahia, Brasil. Hoehnea 29:37–48

    Google Scholar 

  • Conceição AA, Orr BJ (2012) Post-fire flowering and fruiting in the caulescent rosette Vellozia sincorana, an endemic plant to the Northeast of Brazil. Acta Bot Bras 26:94–100

    Article  Google Scholar 

  • Conceição AA, Pirani JR (2005) Delimitação de habitats em campos rupestres na Chapada Diamantina: substratos, composição florística e aspectos estruturais. Bol Bot Univ São Paulo 23:85–111

    Google Scholar 

  • Conceição AA, Pirani JR (2007) Diversidade em quatro áreas de campos rupestres na Chapada Diamantina, Bahia, Brasil: espécies distintas, mas riquezas similares. Rodriguésia 58:193–206

    Google Scholar 

  • Conceição AA, Rapini A, Pirani JR, Giulietti AM, Harley R, Silva TRS, Funch R, Santos AKA, Correia C, Andrade IM, Costa JAS, Souza LRS, Andrade MJG, Freitas TA, Freitas AMM, Oliveira AA (2005) Campos rupestres. In: Juncá FA, Funch L, Franca-Rocha W (eds) Biodiversidade e conservação da Chapada Diamantina. Biodiversidade 13. Ministério do Meio Ambiente, Brasília, pp 153–180

    Google Scholar 

  • Conceição AA, Funch LS, Pirani JR (2007a) Reproductive phenology, pollination and seed dispersal syndromes on sandstone outcrop vegetation in the “Chapada Diamantina”, northeast Brazil: population and community analyses. Rev Bras Bot 30:475–485

    Google Scholar 

  • Conceição AA, Giulietti AM, Meirelles ST (2007b) Ilhas de vegetação em afloramentos de quartzito-arenito no Morro do Pai Inácio, Chapada Diamantina, Bahia, Brasil. Acta Bot Bras 21:335–347

    Article  Google Scholar 

  • Conceição AA, Pirani JR, Meirelles ST (2007c) Floristics, sctructure and soil of insular vegetation in four quartzite-sandstone outcrops of “Chapada Diamantina”, northeast Brazil. Rev Bras Bot 30:641–655

    Article  Google Scholar 

  • Conceição AA, Alencar TG, Souza JM, Moura ADC, Silva GA (2013) Massive post-fire flowering events in a tropical mountain region of Brazil: high episodic supply of floral resources. Acta Bot Bras 27:847–850

    Article  Google Scholar 

  • Conceição AA, Cristo FH, Santos AA, Santos JB, Freitas EL, Borges BPS, Macêdo LSS, Oliveira RCS (2015) Vegetação endêmica e espécie invasora em campos rupestres de áreas garimpadas. Rodriguésia 66:675–683

    Google Scholar 

  • Echternacht L, Trovó M, Oliveira CT, Pirani JR (2011) Areas of endemism in the Espinhaço Range in Minas Gerais, Brazil. Flora 206:782–791

    Article  Google Scholar 

  • Ellenberg H, Müller-Dombois D (1967) Tentative physiognomic-ecological classification of plant formations of the earth. Ber Geob Inst Rubel Zurich 37:21–55

    Google Scholar 

  • Fernandes GW, Barbosa NPU, Negreiros D, Paglia AP (2014) Challenges for the conservation of vanishing megadiverse rupestrian grasslands. Nat Cons 12:162–165

    Article  Google Scholar 

  • Ferreira RL (2005) A vida subterrânea nos campos ferruginosos. Carste 3:106–115

    Google Scholar 

  • Giulietti AM, Pirani JR (1988) Patterns of geographic distribution of some plant species from the Espinhaço Range, Minas Gerais and Bahia, Brazil. In: Vanzolini PE, Heyer WR (eds) Proceedings of a workshop on Neotropical distribution patterns. Academia Brasileira de Ciências, Rio de Janeiro, pp 39–69

    Google Scholar 

  • Giulietti AM, Menezes NL, Pirani JR, Meguro M, Wanderley MGL (1987) Flora da Serra do Cipó, Minas Gerais: caracterização e lista das espécies. Bol Bot Univ São Paulo 9:1–151

    Google Scholar 

  • Giulietti AM, Pirani JR, Harley RM (1997) Espinhaço Range Region, Eastern Brazil. In: Davis SD, Heywood VH, Villa-Lobos J, Hamilton AC (eds) Centres of plant diversity. A guide and strategy for their conservation, vol 3. The Americas. IUCN Publication Unity, Cambridge, pp 397–404

    Google Scholar 

  • Givnish TJ, Millam KC, Berry PE, Sytsma KJ (2007) Phylogeny, adaptive radiation, and historical biogeography of Bromeliaceae inferred from Ndhf sequence data. In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG (eds) Monocots: comparative biology and evolution—Poales. Rancho Santa An Botanic Garden, Claremont, California, pp 3–26

    Google Scholar 

  • Givnish, TJ Barfuss MHJ, Ee BV, Riina R, Schulte K, Horres R, Gonsiska PA, Jabaily RS, Crayn DM, Smith JAC, Winter K, Brown GK, Evans TM, Holst BK, Luther H, Till W, Zizca G, Berry PE, Sytsma KJ (2011) Phylogeny, adaptive radiation, and historical biogeography in Bromeliaceae: insights from an eight-locus plastid phylogeny. Am J Bot 98:872–895

    Google Scholar 

  • Harley RM (1988) Evolution and distribution of Eriope (Labiatae), and its relatives, in Brazil. In: Vanzolini PE, Heyer WR (eds) Proceedings of a workshop on neotropical distribution patterns. Academia Brasileira de Ciências, Rio de Janeiro, pp 71–120

    Google Scholar 

  • Harley RM (1995) Introduction. In: Stannard BL (ed) Flora of the Pico das Almas, Chapada Diamantina, Brazil. Royal Botanic Gardens, Kew, pp 1–42

    Google Scholar 

  • Hilário RR, Castro SAB, Ker FTO, Fernandes GW (2011) Unexpected effects of pigeon-peas (Cajanus cajan) in the restoration of rupestrian grasslands. Planta Daninha 29:717–723

    Google Scholar 

  • Hopper SD (2009) OCBIL theory: towards an integrated understanding of the evolution, ecology and conservation of biodiversity on old, climatically buffered, infertile landscape. Plant Soil 322:49–86

    Article  CAS  Google Scholar 

  • Jacobi CM, Carmo FF (2011) Life-forms, pollination and seed dispersal syndromes in plant communities on ironstone outcrops, SE Brazil. Acta Bot Bras 25:395–412

    Article  Google Scholar 

  • Jacobi CM, Carmo FF (eds) (2012) Floristic Diversity of the Quadrilátero Ferrífero Cangas. Editora IDM, Belo Horizonte

    Google Scholar 

  • Jacobi CM, Carmo FF, Vincent RC, Stehmann JR (2007) Plant communities on ironstone outcrops: a diverse and endangered Brazilian ecosystem. Biodiv Cons 16:2185–2200

    Article  Google Scholar 

  • Jacobi CM, Carmo FF, Campos IC (2011) Soaring extinction threats to endemic plants in Brazilian metal-rich regions. Ambio 40:540–543

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacobi CM, Carmo FF, Campos IC (2015) Iron geosystems: priority areas for conservation in Brazil. In: Tibbett M (ed) Mining in ecologically sensitive landscapes. CRC Press, Leiden, pp 55–77

    Google Scholar 

  • Kolbek J, Alves RJV (2008) Impacts of cattle, fire and wind in rocky savannas, southeastern Brazil. Acta Univ Carol Biol 22:111–130

    Google Scholar 

  • Lista de Espécies da Flora do Brasil (2014) Jardim Botânico do Rio de Janeiro. http://www.floradobrasil.jbrj.gov.br. Accessed 29 Oct 2014

  • Loeuille B, Semir J, Lohmann LG, Pirani JR (2015) A phylogenetic analysis of Lychnophorinae (Asteraceae: Vernonieae) based on molecular and morphological data. Syst Bot 40:299–315

    Article  Google Scholar 

  • Messias MCTB, Leite MGP, Meira-Neto JAA, Kozovits AR (2011) Life-form spectra of quartzite and itabirite rocky outcrops sites, Minas Gerais, Brazil. Biota Neotrop 11:255–268

    Article  Google Scholar 

  • Monteiro HS, Vasconcelos PM, Farley KA, Spier CA, Mello CL (2014) (U–Th)/He geochronology of goethite and the origin and evolution of cangas. Geochim Cosmochim Acta 131:267–289

    Article  CAS  Google Scholar 

  • Mucina L, Wardell-Johnson GW (2011) Landscape age and soil fertility, climatic stability, and fire regime predictability: beyond the OCBIL framework. Plant Soil 341:1–23

    Article  CAS  Google Scholar 

  • Neves SPS, Conceição AA (2007) Vegetação em afloramentos rochosos na Serra do Sincorá, Chapada Diamantina, Bahia Brasil. Sitientibus 7:36–45

    Google Scholar 

  • Neves SPS, Conceição AA (2010) Campo rupestre recém-queimado na Chapada Diamantina, Bahia, Brasil: plantas de rebrota e sementes, com espécies endêmicas na rocha. Acta Bot Bras 24:697–707

    Article  Google Scholar 

  • Oliveira RS, Galvão HC, Campos MCR, Eller CB, Pearse SJ, Lambers H (2015) Mineral nutrition of campos rupestres plant species on contrasting nutrient-impoverished soil types. New Phytol 205:1183–1194

    Article  CAS  PubMed  Google Scholar 

  • Pedreira AJ (1997) Sistemas deposicionais da Chapada Diamantina centro-oriental, Bahia. Rev Bras Geoc 27:229–240

    Google Scholar 

  • Pugliese L, Rapini A (2015) Tropical refuges with high phylogenetic diversity reveal contrasting phylogenetic structures. Int J Biodiv. doi:10.1155/2015/758019

    Google Scholar 

  • Rando JG, Pirani JR (2011) Padrões de distribuição geográfica das species de Chamaecrista sect. Chamaecrista ser. Coriaceae (Benth.) H.S. Irwin & Barneby, Leguminosae – Cesalpinoideae. Rev Bras Bot 34:499–513

    Google Scholar 

  • Rapini A, Mello-Silva R, Kawasaki ML (2002) Richness and endemism in Asclepiadoideae (Apocynaceae) from the Espinhaço Range of Minas Gerais, Brazil – a conservationist view. Biodiv Cons 11:1733–1746

    Article  Google Scholar 

  • Rapini A, Ribeiro PL, Lambert S, Pirani JR (2008) A flora dos campos rupestres da Cadeia do Espinhaço. Megadiv 4:15–23

    Google Scholar 

  • Ribeiro PL, Rapini A, Silva UCS, Konno TUP, Damascena LS, Berg C (2012) Spatial analyses of the phylogenetic diversity of Minaria (Apocynaceae): assessing priority areas for conservation in the Espinhaço Range, Brazil. Syst Biodiv 10:317–331

    Article  Google Scholar 

  • Ribeiro PL, Rapini A, Damascena LS, Berg C (2014) Plant diversification in the Espinhaço Range: insights from the biogeography of Minaria (Apocynaceae). Taxon 63:1253–1264

    Article  Google Scholar 

  • Rumble MA (1989) Wildlife associated with scoria outcrops: implications for reclamation of surface-mined lands. USDA Forest Service 285:1–6

    Google Scholar 

  • Saadi A (1995) A geomorfologia da Serra do Espinhaço em Minas Gerais e de suas margens. Geonomos 3:41–63

    Article  Google Scholar 

  • Salgado AAR, Carmo FF (2015) ‘Quadrilátero Ferrífero’: a beautiful and neglected landscape between the gold and iron ore reservoirs. In: Vieira BC, Salgado AAR, Santos LJC (eds) Landscapes and landforms of Brazil, world geomorphological landscapes. Springer, Dordrecht, pp 319–330

    Google Scholar 

  • Silva GA (2013) Florística e estrutura de campos rupestres com diferentes tempos desde o último incêndio, Chapada Diamantina, Brasil. MSc Dissertation, Universidade Estadual de Feira de Santana

    Google Scholar 

  • Simon MF, Pennington T (2012) Evidence for adaptation to fire regimes in the tropical savanna of the Brazilian cerrado. Int J Plant Sci 173:711–723

    Article  Google Scholar 

  • Simon MF, Grether R, Queiroz LP, Skema C, Pennington RT, Hughes CE (2009) Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations of fire. Proc Natl Acad Sci USA 48:20359–20364

    Article  Google Scholar 

  • Stannard BL (ed) (1995) Flora of the Pico das Almas, Chapada Diamantina. Brazil, Royal Botanic Gardens, Kew

    Google Scholar 

  • Van der Pijl L (1982) Principles of dispersal in higher plants. Springer, Berlin

    Book  Google Scholar 

  • Vegas-Vilarrúbia T, Nogué S, Rull V (2012) Global warming, habitat shifts and potential refugia for biodiversity conservation in the neotropical Guayana Highlands. Biol Cons 152:159–168

    Article  Google Scholar 

  • Zappi DC, Taylor NP (2012) Cactaceae. In: Jacobi CM, Carmo FF (eds) Floristic diversity of Quadrilátero Ferrífero Cangas. Código Editora, BR, pp 98–100

    Google Scholar 

  • Zappi DC, Lucas E, Stannard B, Lughadha EN, Pirani JR, Queiroz LP, Atkins S, Hind DJN, Giulietti AM, Harley RM (2003) Lista das plantas vasculares de Catolés, Chapada Diamantina, Bahia, Brasil. Bol Bot Univ São Paulo 21:345–398

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Instituto Chico Mendes de Conservação da Biodiversidade for the license to work in Chapada Diamantina National Park. This study received financial support from the Brazilian Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, National Council for Scientific and Technological Development; research grants no. 311301/2011-8 and 479834/2008-3, general research grant no. 556820/2011-0 and Pesquisa Ecológica de Longa Duração [PELD, Long-term Ecological Research] grant no. 59/2009), the Minas Gerais State Research Foundation (FAPEMIG, grants APQ-00851-11 and PPM-00224-13), and the Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB, Foundation for the Support of Research in the State of Bahia; grant no. TO 26/2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abel A. Conceição .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Conceição, A.A. et al. (2016). Rupestrian Grassland Vegetation, Diversity, and Origin. In: Fernandes, G. (eds) Ecology and Conservation of Mountaintop grasslands in Brazil. Springer, Cham. https://doi.org/10.1007/978-3-319-29808-5_6

Download citation

Publish with us

Policies and ethics