Advertisement

Ordered Sets pp 199-226 | Cite as

Lattices

  • Bernd Schröder
Chapter
  • 1.1k Downloads

Abstract

Lattices are (after chains) the most common ordered structures in mathematics. The reason probably is that the union and intersection of sets are the lattice operations “supremum” and “infimum” in the power set ordered by inclusion (see Example  3.21, part 5) and that many function spaces can be viewed as lattices (see Example  3.21, parts 6 and 7). Lattice theory is a well developed branch of mathematics. There are many excellent texts on lattice theory (see, e.g., [21, 54, 56, 98, 112]), so we will concentrate here only on some core topics and on the aspects that relate to unsolved problems and work presented in this text.

Keywords

Dedekind-MacNeille Completion Finite Distributive Lattice Fixed Point Property Lexicographic Sum Automorphism Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 21.
    Birkhoff, G. (1967). Lattice theory (3rd ed.). Providence: AMS Colloquium Publications XXV.zbMATHGoogle Scholar
  2. 29.
    Bordat, J. P. (1992). Sur l’algorithmique combinatoire d’ordres finis. Thèse de Docteur d’état, Université Montpellier II.Google Scholar
  3. 54.
    Crawley, P., & Dilworth, R. P. (1973). Algebraic theory of lattices. Englewood Cliffs: Prentice Hall.zbMATHGoogle Scholar
  4. 56.
    Davey, B., & Priestley, H. (1990). Introduction to lattices and order. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  5. 58.
    Davis, A. C. (1955). A characterization of complete lattices. Pacific Journal of Mathematics, 5, 311–319.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 71.
    Duffus, D., Poguntke, W., & Rival, I. (1980). Retracts and the fixed point problem for finite partially ordered sets. Canadian Mathematical Bulletin, 23, 231–236.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 98.
    Freese, R., Ježek, J., & Nation, J. (1995). Free lattices. Mathematical surveys and monographs (Vol. 42). Providence: American Mathematical SocietyzbMATHGoogle Scholar
  8. 112.
    Grätzer, G. (1978). General lattice theory. Basel: Birkhäuser.CrossRefzbMATHGoogle Scholar
  9. 167.
    Knaster, B. (1928). Un théorème sur les fonctions d’ensembles. Annales de la Société Polonaise de Mathématique., 6, 133–134.zbMATHGoogle Scholar
  10. 192.
    Liu, W.-P., & Wan, H. (1993). Automorphisms and isotone self-maps of ordered sets with top and bottom. Order, 10, 105–110.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 277.
    Schröder, B. (2002). Examples on ordered set reconstruction. Order, 19, 283–294.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 278.
    Schröder, B. (2003). On ordered sets with isomorphic marked maximal cards. Order, 20, 299–327.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 283.
    Schröder, B. (2010). Fundamentals of mathematics – An introduction to proofs, logic, sets and numbers. Hoboken: Wiley.zbMATHGoogle Scholar
  14. 307.
    Tarski, A. (1955). A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics, 5, 285–309.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 325.
    Willard, S. (1970). General topology. Reading: Addison-Wesley.zbMATHGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Bernd Schröder
    • 1
  1. 1.Department of MathematicsUniversity of Southern MississippiHattiesburgUSA

Personalised recommendations