Advertisement

Ordered Sets pp 113-153 | Cite as

Constraint Satisfaction Problems

  • Bernd Schröder
Chapter
  • 1.1k Downloads

Abstract

When proving theorems, we have a luxury that is so fundamental, we often take it for granted: If we need to work with an object, we say “let x be \(\langle\) the object in question\(\rangle\)” and we move on with the proof. Especially in the finite setting it is obvious that, given enough patience, we should be able to find the object: Simply try out all possibilities and, if there is an object as desired, at least one of them will work. As long as we are not interested in the object itself, this approach is very efficient for developing a theory.

Keywords

Polynomial Time Constraint Satisfaction Problem Unary Constraint Point Property Local Consistency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 5.
    Aho, A. V., Hopcroft, J. E., & Ullman, J. D. (1983). Data structures and algorithms. Reading: Addison-Wesley.zbMATHGoogle Scholar
  2. 9.
    Bacchus, F., & Grove, A. (1995). On the forward checking algorithm. In Principles and practices in constraint programming (CP-95). Lecture notes in computer science (Vol. 976, pp. 292–309). Berlin: Springer. Available at http://www.cs.toronto.edu/~fbacchus/on-line.html
  3. 30.
    Bouchitté, V., & Habib, M. (1989). The calculation of invariants for ordered sets. In I. Rival (Ed.), Algorithms and order (pp. 231–279). Dordrecht: Kluwer Academic.CrossRefGoogle Scholar
  4. 45.
    Chen, P. C. (1992). Heuristic sampling: A method for predicting the performance of tree searching programs. SIAM Journal on Computing, 21, 295–315.CrossRefzbMATHGoogle Scholar
  5. 46.
    Clay Mathematics Institute web site. (2015). http://www.claymath.org/millennium-problems
  6. 59.
    Debruyne, R., & Bessière, C. (1997). Some practicable filtering techniques for the constraint satisfaction problem. In Proceedings of the 15th International Joint Conference on Artificial Intelligence (IJCAI) (pp. 412–417).Google Scholar
  7. 60.
    Dechter, R. (1992). Constraint networks. In S. Shapiro (Ed.), Encyclopedia of artificial intelligence (pp. 276–284). New York: Wiley.Google Scholar
  8. 61.
    Dechter, R., & Pearl, J. (1989). Tree clustering for constraint networks. Artificial Intelligence, 38, 353–366.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 65.
    Donalies, M., & Schröder, B. (2000). Performance guarantees and applications for Xia’s algorithm. Discrete Mathematics, 213, 67–86 (Proceedings of the Banach Center Minisemester on Discrete Mathematics, Week on Ordered Sets).Google Scholar
  10. 99.
    Freuder, E. C. (1982). A sufficient condition for backtrack-free search. Journal of the ACM, 29, 24–32.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 103.
    Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of NP-completeness. San Francisco: Freeman.zbMATHGoogle Scholar
  12. 104.
    Gaschnig, J. (1978). Experimental case studies of backtrack vs. (Waltz)-type vs. new algorithms for satisfying assignment problems. In Proceedings of the Second Canadian Conference on Artificial Intelligence, Toronto (pp. 268–277).Google Scholar
  13. 110.
    Gottlob, G. (2012). On minimal constraint networks. Artificial Intelligence, 191/192, 42–60.Google Scholar
  14. 111.
    Grant, K., Nowakowski, R., & Rival, I. (1995). The endomorphism spectrum of an ordered set. Order, 12, 45–55.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 116.
    Habib, M., Morvan, M., & Rampon, J.-X. (1993). On the calculation of transitive reduction-closure of orders. Discrete Mathematics, 111, 289–303.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 118.
    Han, C.-C., & Lee, C.-H. (1988). Comments on Mohr and Henderson’s path consistency algorithm. Artificial Intelligence, 36, 125–130.CrossRefzbMATHGoogle Scholar
  17. 119.
    Haralick, R. M., & Elliott, G. L. (1980). Increasing tree search efficiency for constraint satisfaction problems. Artificial Intelligence, 14, 263–313.CrossRefGoogle Scholar
  18. 142.
    Hogg, T., Huberman, B., & Williams, C. (1996). Phase transitions and the search problem. Artificial Intelligence, 81, 1–15.MathSciNetCrossRefGoogle Scholar
  19. 143.
    Hopcroft, J., & Karp, R. (1973). A \(n^{\frac{5} {2} }\) algorithm for maximum matching in bipartite graphs. SIAM Journal on Computing, 2, 225–231.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 149.
    Jeavons, P., Cohen, D., & Pearson, J. (1998). Constraints and universal algebra. Annals of Mathematics and Artificial Intelligence, 24, 51–67.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 168.
    Knuth, D. E. (1975). Estimating the efficiency of backtrack programs. Mathematics of Computation, 29, 121–136.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 170.
    Kondrak, G., & van Beek, P. (1997). A theoretical evaluation of selected backtracking algorithms. Artificial Intelligence, 89, 365–387.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 177.
    Kumar, V. (1992). Algorithms for constraint satisfaction problems – A survey. AI magazine, 13, 32–44.Google Scholar
  24. 198.
    Mackworth, A. K. (1992). Constraint satisfaction. In S. Shapiro (Ed.), Encyclopedia of artificial intelligence (pp. 284–293). New York: Wiley.Google Scholar
  25. 201.
    McGregor, J. J. (1979). Relational consistency algorithms and their application in finding subgraph and graph isomorphisms. Information Sciences, 19, 229–250.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 210.
    Mohr, R., & Henderson, T. C. (1986). Arc and path consistency revisited. Artificial Intelligence, 28, 225–233.CrossRefGoogle Scholar
  27. 212.
    Nadel, B. (1989). Constraint satisfaction algorithms. Computational Intelligence, 5, 188–224.CrossRefGoogle Scholar
  28. 216.
    Niederle, J. (2008). Forbidden retracts for finite ordered sets of width at most four. Discrete Mathematics, 308, 1774–1784.MathSciNetCrossRefzbMATHGoogle Scholar
  29. 226.
    Priestley, H. A., & Ward, M. P. (1994). A multipurpose backtracking algorithm. Journal of Symbolic Computation, 18, 1–40.MathSciNetCrossRefGoogle Scholar
  30. 229.
    Prosser, P. (1993). Hybrid algorithms for the constraint satisfaction problem. Computational Intelligence, 9, 268–299.CrossRefGoogle Scholar
  31. 231.
    Purdom, P. W. (1978). Tree size by partial backtracking. SIAM Journal on Computing, 7, 481–491.MathSciNetCrossRefzbMATHGoogle Scholar
  32. 260.
    Rossi, F., van Beek, P., & Walsh, T. (2006). Handbook of constraint programming. Amsterdam: Elsevier.zbMATHGoogle Scholar
  33. 267.
    Sabin, D., & Freuder, E. C. (1994). Contradicting conventional wisdom in constraint satisfaction. In Proceedings of the 11th European Conference on Artificial Intelligence, Amsterdam (pp. 125–129).Google Scholar
  34. 272.
    Schröder, B. (1996). Fixed cliques and generalizations of dismantlability. In Y. Alavi et al. (Eds.), Combinatorics, graph theory, and algorithms. Proceedings of the Eighth Quadrennial International Conference in Graph Theory, Combinatorics, Algorithms and Applications (Vol. II, pp. 747–756).Google Scholar
  35. 280.
    Schröder, B. (2005). The automorphism conjecture for small sets and series parallel sets. Order, 22, 371–387.MathSciNetCrossRefzbMATHGoogle Scholar
  36. 286.
    Schröder, B. (2015). Homomorphic constraint satisfaction problem solver. http://www.math.usm.edu/schroeder/software.htm Google Scholar
  37. 288.
    Schröder, B. (2015). The fixed point property for ordered sets of interval dimension 2 (submitted to order).Google Scholar
  38. 289.
    Schröder, B. (2016). The use of retractions in the fixed point theory for ordered sets. In M. Alfuraidan, & Q. H. Ansari (Eds.), Fixed point theory and graph theory – Foundations and integrative approaches (pp. 365–417). Amsterdam: Elsevier. Chapter in the Proceedings of the Workshop on Fixed Point Theory and Applications, King Fahd University of Petroleum and Minerals, December 2014, Dhahran, Saudi Arabia.Google Scholar
  39. 293.
    Smith, B., & Dyer, M. (1996). Locating the phase transition in binary constraint satisfaction problems. Artificial Intelligence, 81, 155–181.MathSciNetCrossRefGoogle Scholar
  40. 313.
    Tsang, E. (1993). Foundations of constraint satisfaction. New York: Academic. Out of print. Now available through Amazon books on demand, see http://www.bracil.net/edward/FCS.html Google Scholar
  41. 315.
    van Beek, P., & Dechter, R. (1995). On the minimality of row-convex constraint networks. Journal of the ACM, 42, 543–561.MathSciNetCrossRefzbMATHGoogle Scholar
  42. 319.
    West, D. (1985). Parameters of partial orders and graphs: Packing, covering and representation. In I. Rival (Ed.), Graphs and orders (pp. 267–350). Dordrecht: Dordrecht-Reidel.CrossRefGoogle Scholar
  43. 326.
    Williams, C., & Hogg, T. (1994). Exploiting the deep structure of constraint problems. Artificial Intelligence, 70, 73–117.CrossRefzbMATHGoogle Scholar
  44. 328.
    Xia, W. (1992). Fixed point property and formal concept analysis. Order, 9, 255–264.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Bernd Schröder
    • 1
  1. 1.Department of MathematicsUniversity of Southern MississippiHattiesburgUSA

Personalised recommendations