Skip to main content

Retractions

  • Chapter
  • First Online:
Ordered Sets
  • 1629 Accesses

Abstract

Retractions are an important tool to explore the structure of ordered sets. For example, for the fixed point property, certain retractions can reduce the problem to a problem on smaller, easier to handle structures. Viewed “in the opposite direction,” retractions can also be seen as a tool to build larger examples of ordered sets with certain properties. Similar statements hold for lexicographic sum decompositions, see Chapter 7, and for products and sets P Q, see Chapter 12 Sometimes investigations via retractions can have surprising consequences, as can be seen in Theorem 4.48. For an excellent survey on retractions, see [245]. For a recent survey on the use of retractions in fixed point theory, see [289].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This choice of language comes from lattice theory and will be motivated in Proposition 8.29.

  2. 2.

    Although the letter \(\mathcal{C}\) is used in Definition 1.33, there will be no confusion, as comparative retractions will not be used in the context of reconstruction.

References

  1. Baclawski, K., & Björner, A. (1979). Fixed points in partially ordered sets. Advances in Mathematics, 31, 263–287.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bhavale, A. N. (2013). Enumeration of Certain Algebraic Systems and Related Structures. Ph.D. thesis, University of Pune.

    Google Scholar 

  3. Carl, S., & Heikkilä, S. (2011). Fixed point theory in ordered sets and applications; from differential and integral equations to game theory. New York: Springer.

    Book  MATH  Google Scholar 

  4. Corominas, E. (1990). Sur les ensembles ordonnés projectifs et la propriété du point fixe. Comptes Rendus de l’Académie des Sciences Paris Série I, 311, 199–204.

    MathSciNet  MATH  Google Scholar 

  5. Duffus, D., Poguntke, W., & Rival, I. (1980). Retracts and the fixed point problem for finite partially ordered sets. Canadian Mathematical Bulletin, 23, 231–236.

    Article  MathSciNet  MATH  Google Scholar 

  6. Duffus, D., Rival, I., & Simonovits, M. (1980). Spanning retracts of a partially ordered set. Discrete Mathematics, 32, 1–7.

    Article  MathSciNet  MATH  Google Scholar 

  7. Dushnik, B., & Miller, E. W. (1941). Partially ordered sets. American Journal of Mathematics, 63, 600–610.

    Article  MathSciNet  MATH  Google Scholar 

  8. Farley, J. D. (1993). The uniqueness of the core. Order, 10, 129–131.

    Article  MathSciNet  MATH  Google Scholar 

  9. Farley, J. D. (1997). Perfect sequences of chain-complete posets. Discrete Mathematics, 167/168, 271–296.

    Google Scholar 

  10. Farley, J. D. (1997). The fixed point property for posets of small width. Order, 14, 125–143.

    Article  MathSciNet  MATH  Google Scholar 

  11. Fofanova, T., & Rutkowski, A. (1987). The fixed point property in ordered sets of width two. Order, 4, 101–106.

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, B. (1993). The core of a chain complete poset with no one-way infinite fence and no tower. Order, 10, 349–361.

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, B., & Milner, E. C. (1992). The PT order and the fixed point property. Order, 9, 321–331.

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, B., & Milner, E. C. (1993). A chain complete poset with no infinite antichain has a finite core. Order, 10, 55–63.

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, B., & Milner, E. C. (1997). Isomorphic ANTI-cores of caccc posets. Discrete Mathematics, 176, 185–195.

    Article  MathSciNet  MATH  Google Scholar 

  16. Niederle, J. (2008). Forbidden retracts for finite ordered sets of width at most four. Discrete Mathematics, 308, 1774–1784.

    Article  MathSciNet  MATH  Google Scholar 

  17. Nowakowski, R., & Rival, I. (1979). A fixed edge theorem for graphs with loops. Journal of Graph Theory, 3, 339–350.

    Article  MathSciNet  MATH  Google Scholar 

  18. Rival, I. (1976). A fixed point theorem for finite partially ordered sets. Journal of Combinatorial Theory (A), 21, 309–318.

    Article  MathSciNet  MATH  Google Scholar 

  19. Rival, I. (1982). The retract construction. In I. Rival (Ed.), Ordered sets (pp. 97–122). Dordrecht: Dordrecht-Reidel.

    Chapter  Google Scholar 

  20. Roddy, M., & Schröder, B. (2005). Isotone relations revisited. Discrete Mathematics, 290, 229–248.

    Article  MathSciNet  MATH  Google Scholar 

  21. Rutkowski, A. (1986). The fixed point property for sums of posets. Demonstratio Mathematica, 4, 1077–1088.

    MathSciNet  MATH  Google Scholar 

  22. Rutkowski, A. (1989). The fixed point property for small sets. Order, 6, 1–14.

    Article  MathSciNet  MATH  Google Scholar 

  23. Rutkowski, A., private communication.

    Google Scholar 

  24. Rutkowski, A., & Schröder, B. (1994). Retractability and the fixed point property for products. Order, 11, 353–359.

    Article  MathSciNet  MATH  Google Scholar 

  25. Schröder, B. (1993). Fixed point property for 11-element sets. Order, 10, 329–347.

    Article  MathSciNet  MATH  Google Scholar 

  26. Schröder, B. (1996). Fixed cliques and generalizations of dismantlability. In Y. Alavi et al. (Eds.), Combinatorics, graph theory, and algorithms. Proceedings of the Eighth Quadrennial International Conference in Graph Theory, Combinatorics, Algorithms and Applications (Vol. II, pp. 747–756).

    Google Scholar 

  27. Schröder, B. (2000). The uniqueness of cores for chain-complete ordered sets. Order, 17, 207–214.

    Article  MathSciNet  MATH  Google Scholar 

  28. Schröder, B. (2015). Homomorphic constraint satisfaction problem solver. http://www.math.usm.edu/schroeder/software.htm

    Google Scholar 

  29. Schröder, B. (2016). The use of retractions in the fixed point theory for ordered sets. In M. Alfuraidan, & Q. H. Ansari (Eds.), Fixed point theory and graph theory – Foundations and integrative approaches (pp. 365–417). Amsterdam: Elsevier. Chapter in the Proceedings of the Workshop on Fixed Point Theory and Applications, King Fahd University of Petroleum and Minerals, December 2014, Dhahran, Saudi Arabia.

    Google Scholar 

  30. Schröder, B. (2016). Applications of dismantlability in analysis (in preparation).

    Google Scholar 

  31. Smithson, R. E. (1971). Fixed points of order-preserving multifunctions. Proceedings of the American Mathematical Society, 28, 304–310.

    Google Scholar 

  32. Thakare, N., Pawar, M., & Waphare, B. (2002). A structure theorem for dismantlable lattices and enumeration. Periodica Mathematica Hungarica, 45, 147–160.

    Article  MathSciNet  MATH  Google Scholar 

  33. Walker, J. W. (1984). Isotone relations and the fixed point property for posets. Discrete Mathematics, 48, 275–288.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Schröder, B. (2016). Retractions. In: Ordered Sets. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-29788-0_4

Download citation

Publish with us

Policies and ethics