Ordered Sets pp 333-356 | Cite as

Enumeration of Ordered Sets

  • Bernd Schröder


In any discrete setting, one of the most natural questions to ask is “How many of these objects are there?” The automorphism problem (Open Question 2.14) and Dedekind’s problem (Open Question 2.30) are questions like that. A counting question can be motivated by pure curiosity or, as the Kelly Lemma (see Proposition  1.40) in reconstruction shows, it can be a useful lemma for proving further results. The two most natural counting questions for ordered sets are still unanswered and it appears that both are quite hard.


Grade Level Formal Power Series Grade Function Rank Function Linear Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 26.
    Bollobás, B. (1978). Extremal graph theory. London/New York/San Francisco: Academic.zbMATHGoogle Scholar
  2. 35.
    Brightwell, G., & Goodall, S. (1990). The number of partial orders of fixed width. Order, 15, 315–337.MathSciNetzbMATHGoogle Scholar
  3. 37.
    Brinkmann, G., & McKay, B. (2002). Posets on up to 16 points. Order, 19, 147–179.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 44.
    Chaunier, C., & Lygerōs, N. (1992). The number of orders with thirteen elements. Order, 9, 203–204.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 55.
    Culberson, J. C., & Rawlins, G. J. E. (1991). New results from an algorithm for counting posets. Order, 7, 361–374.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 57.
    Davidson, J. L. (1986). Asymptotic enumeration of partial orders. Congressus Numerantium, 53, 277–286.MathSciNetGoogle Scholar
  7. 80.
    El-Zahar, M. (1989). Enumeration of ordered sets. In I. Rival (Ed.), Algorithms and order. NATO advanced science institute series c: Mathematical and physical sciences (pp. 327–352). Dordrecht: Kluwer Academic.Google Scholar
  8. 82.
    Erné, M., & Stege, K. (1991). Counting finite posets and topologies. Order, 8, 247–265.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 84.
    Fagin, R. (1976). Probabilities on finite models. Journal of Symbolic Logic, 41, 50–58.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 113.
    Gurevich, Y., & Shelah, S. (1987). Expected computation time for Hamiltonian path problem. SIAM Journal on Computing, 16(3), 486–502.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 134.
    Heitzig, J., & Reinhold, J. (2000). The number of unlabeled orders on fourteen elements. Order, 17, 333–341.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 162.
    Klarner, D. (1969). The number of graded partially ordered sets. Journal of Combinatorial Theory, 6, 12–19.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 163.
    Klarner, D. (1970). The number of classes of isomorphic graded partially ordered sets. Journal of Combinatorial Theory, 9, 412–419.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 165.
    Kleitman, D. J., & Rothschild, B. L. (1970). The number of finite topologies. Proceedings of the American Mathematical Society, 25, 276–282.Google Scholar
  15. 166.
    Kleitman, D. J., & Rothschild, B. L. (1975). Asymptotic enumeration of partial orders on a finite set. Transactions of the American Mathematical Society, 205, 205–220.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 178.
    Kung, J. P. S. (1999). Möbius inversion. Encyclopedia of Mathematics. Available at
  17. 203.
    McKay, B. D., & Piperno, A. (2013). Practical graph isomorphism, II. Journal of Symbolic Computation, 60, 94–112.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 228.
    Prömel, H. J. (1987). Counting unlabeled structures. Journal of Combinatorial Theory, Series A, 44, 83–93.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 261.
    Rota, G.-C. (1964). On the foundations of combinatorial theory I: Theory of Möbius functions. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 2, 340–368.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 311.
    Trotter, W. T. (1992). Combinatorics and partially ordered sets: Dimension theory. Baltimore: Johns Hopkins University Press.zbMATHGoogle Scholar
  21. 324.
    Wilf, H. S. (1994). Generating functionology. New York: Academic.Google Scholar
  22. 326.
    Williams, C., & Hogg, T. (1994). Exploiting the deep structure of constraint problems. Artificial Intelligence, 70, 73–117.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Bernd Schröder
    • 1
  1. 1.Department of MathematicsUniversity of Southern MississippiHattiesburgUSA

Personalised recommendations