Skip to main content
Book cover

Ordered Sets pp 255–277Cite as

Birkhäuser

Dimension

  • Chapter
  • First Online:
  • 1615 Accesses

Abstract

Dimension theory is a prominent area in ordered sets. In dimension theory, orders are represented using the orders that occur most frequently, namely, total orders. As for Chapter 8 on lattices, it must be said that this chapter can only provide brief exposure to the basics of dimension theory. For a thorough presentation of this subject, consider [311].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    If this is not interesting enough, consider scheduling computations on a processor.

  2. 2.

    And, depending on the climate at the institution, the resulting order may be the subject of heated discussion.

References

  1. Arditti, J. C. (1976). Graphes de comparabilité et dimension des ordres. Notes de Recherches, CRM 607. Centre de Recherches Mathématiques Université de Montréal.

    Google Scholar 

  2. Arditti, J. C., & Jung, H. A. (1980). The dimension of finite and infinite comparability graphs. Journal of the London Mathematical Society, 21(2), 31–38.

    Article  MathSciNet  MATH  Google Scholar 

  3. Brightwell, G. (1988). Linear extensions of infinite posets. Discrete Mathematics, 70, 113–136.

    Article  MathSciNet  MATH  Google Scholar 

  4. Brightwell, G. R., Felsner, S., & Trotter, W. T. (1995). Balancing pairs and the cross product conjecture. Order, 12, 327–349.

    Article  MathSciNet  MATH  Google Scholar 

  5. Brualdi, R. A., Jung, H. C., & Trotter, W. T. (1994). On the poset of all posets on n elements. Discrete Applied Mathematics, 50, 111–123.

    Article  MathSciNet  MATH  Google Scholar 

  6. Dilworth, R. P. (1950). A decomposition theorem for partially ordered sets. Annals of Mathematics, 51, 161–166.

    Article  MathSciNet  MATH  Google Scholar 

  7. Erné, M. (1981). Open question on p. 843 of [246].

    Google Scholar 

  8. Farley, J. D., & Schröder, B. (2001). Strictly order-preserving maps into \(\mathbb{Z}\), II: A 1979 problem of Erné. Order, 18, 381–385.

    Article  MathSciNet  MATH  Google Scholar 

  9. Felsner, S., & Trotter, W. T. (2000). Dimension, graph and hypergraph coloring. Order, 17, 167–177.

    Article  MathSciNet  MATH  Google Scholar 

  10. Gallai, T. (1967). Transitiv orientierbare graphen. Acta Mathematica Hungarica, 18, 25–66.

    Article  MathSciNet  MATH  Google Scholar 

  11. Golumbic, M. (1980). Algorithmic graph theory and perfect graphs. New York: Academic.

    MATH  Google Scholar 

  12. Gysin, R. (1977). Dimension transitiv orientierbarer Graphen. Acta Mathematica Academiae Scientiarum Hungaricae, 29, 313–316.

    Article  MathSciNet  MATH  Google Scholar 

  13. Hiraguchi, T. (1955). On the dimension of orders. Science Reports of Kanazawa University, 4, 1–20.

    MathSciNet  MATH  Google Scholar 

  14. Kahn, J., & Saks, M. (1984). Balancing poset extensions. Order, 1, 113–126.

    Article  MathSciNet  MATH  Google Scholar 

  15. Kelly, D. (1984). Unsolved problems: Removable pairs in dimension theory. Order, 1, 217–218.

    Article  MathSciNet  Google Scholar 

  16. Kelly, D., & Trotter, W. T. (1982). Dimension theory for ordered sets. In I. Rival (Ed.), Ordered sets (pp. 171–211). Dordrecht: D. Reidel.

    Chapter  Google Scholar 

  17. Kierstead, H., & Trotter, W. T. (1991). A note on removable pairs. In Y. Alavi et al. (Eds.), Graph theory, combinatorics and applications (Vol. 2, pp. 739–742). New York: Wiley.

    Google Scholar 

  18. Kimble, R. (1973). Extremal Problems in Dimension Theory for Partially Ordered Sets. Ph. D. dissertation, MIT.

    Google Scholar 

  19. Kislitsin, S. S. (1968). Finite partially ordered sets and their associated sets of permutations. Matematicheskiye Zametki, 4, 511–518.

    Google Scholar 

  20. Rabinovitch, I., & Rival, I. (1979). The rank of a distributive lattice. Discrete Mathematics, 25, 275–279.

    Article  MathSciNet  MATH  Google Scholar 

  21. Reiner, V., & Welker, V. (1999). A homological lower bound for order dimension of lattices. Order, 16, 165–170.

    Article  MathSciNet  MATH  Google Scholar 

  22. Reuter, K. (1989). Removing critical Pairs. Order, 6, 107–118.

    Article  MathSciNet  MATH  Google Scholar 

  23. Saks, M. (1985). Unsolved problems: Balancing linear extensions of ordered sets. Order, 2, 327–330.

    MathSciNet  Google Scholar 

  24. Spinrad, J. (1988). Subdivision and lattices. Order, 5, 143–147.

    Article  MathSciNet  MATH  Google Scholar 

  25. Sysło, M. (1984). A graph theoretic approach to the jump-number problem. In I. Rival (Ed.), Graphs and order (pp. 185–215). Boston: Dordrecht-Reidel.

    Google Scholar 

  26. Szpilrajn, E. (1930). Sur l’extension de l’ordre partiel. Fundamenta Mathematicae, 16, 386–389.

    MATH  Google Scholar 

  27. Trotter, W. T. (1975). Inequalities in dimension theory for posets. Proceedings of the American Mathematical Society, 47, 311–316.

    Google Scholar 

  28. Trotter, W. T. (1976). A forbidden subposet characterization of an order dimension inequality. Mathematical Systems Theory, 10, 91–96.

    Article  MathSciNet  MATH  Google Scholar 

  29. Trotter, W. T. (1992). Combinatorics and partially ordered sets: Dimension theory. Baltimore: Johns Hopkins University Press.

    MATH  Google Scholar 

  30. Trotter, W. T., Moore, J. I., & Sumner, D. P. (1976). The dimension of a comparability graph. Proceedings of the American Mathematical Society, 60, 35–38.

    Google Scholar 

  31. von Rimscha, M. (1983). Reconstructibility and perfect graphs. Discrete Mathematics, 47, 79–90.

    MathSciNet  MATH  Google Scholar 

  32. Yannakakis, M. (1982). On the complexity of the partial order dimension problem. SIAM Journal of Algebra and Discrete Mathematics, 3, 351–358.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Schröder, B. (2016). Dimension. In: Ordered Sets. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-29788-0_10

Download citation

Publish with us

Policies and ethics