Advertisement

Basics

  • Bernd Schröder
Chapter
  • 1.1k Downloads

Abstract

Few prerequisites are needed to read this text. You should be familiar with real numbers, functions, sets, and relations. Moreover, the elusive property known as “mathematical maturity” should have been developed to the point that you can read and understand proofs and produce simple proofs. Texts that develop these skills are, for example, [117, 283]. A background in graph theory helps, but is not necessary.

Keywords

Binary Relation Order Relation Transitive Closure Order Theory Point Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abian, A. (1971). Fixed point theorems of the mappings of partially ordered sets. Rendiconti del Circolo Mathematico di Palermo, 20, 139–142.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Abian, S., & Brown, A. B. (1961). A theorem on partially ordered sets with applications to fixed point theorems. Canadian Journal of Mathematics, 13, 78–82.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Adámek, J., Herrlich, H., & Strecker, G. (1990). Abstract and concrete categories. New York: Wiley.zbMATHGoogle Scholar
  4. 4.
    Aeschlimann, R., & Schmidt, J. (1992). Drawing orders using less ink. Order, 9, 5–13.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Aho, A. V., Hopcroft, J. E., & Ullman, J. D. (1983). Data structures and algorithms. Reading: Addison-Wesley.zbMATHGoogle Scholar
  6. 6.
    Alvarez, L. (1965). Undirected graphs realizable as graphs of modular lattices. Canadian Journal of Mathematics, 17, 923–932.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Arditti, J. C. (1976). Graphes de comparabilité et dimension des ordres. Notes de Recherches, CRM 607. Centre de Recherches Mathématiques Université de Montréal.Google Scholar
  8. 8.
    Arditti, J. C., & Jung, H. A. (1980). The dimension of finite and infinite comparability graphs. Journal of the London Mathematical Society, 21(2), 31–38.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Bacchus, F., & Grove, A. (1995). On the forward checking algorithm. In Principles and practices in constraint programming (CP-95). Lecture notes in computer science (Vol. 976, pp. 292–309). Berlin: Springer. Available at http://www.cs.toronto.edu/~fbacchus/on-line.html
  10. 10.
    Baclawski, K. (1977). Galois connections and the Leray spectral sequence. Advances in Mathematics, 25, 191–215.MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Baclawski, K. (2012). A combinatorial proof of a fixed point property. Journal of Combinatorial Theory, Series A, 119, 994–1013.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Baclawski, K., & Björner, A. (1979). Fixed points in partially ordered sets. Advances in Mathematics, 31, 263–287.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Balof, B., & Bogart, K. (2003). Simple inductive proofs of the Fishburn and Mirkin theorem and the Scott–Suppes theorem. Order, 20, 49–51.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Bandelt, H. J., & van de Vel, M. (1987). A fixed cube theorem for median graphs. Discrete Mathematics, 67, 129–137.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Barmak, J. (2011). Algebraic topology of finite topological spaces and applications. Lecture notes in mathematics (Vol. 2032). Heidelberg: Springer.zbMATHCrossRefGoogle Scholar
  16. 16.
    Bélanger, M. F., Constantin, J., & Fournier, G. (1994). Graphes et ordonnés démontables, propriété de la clique fixe. Discrete Mathematics, 130, 9–17.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Benedetti, B., & Lutz, F. (2013). The dunce hat in a minimal non-extendably collapsible 3-ball. Electronic Geometry Model No. 2013.10.001. Available at http://www.eg-models.de/models/Polytopal_Complexes/2013.10.001/_direct_link.html and at http://arxiv.org/abs/0912.3723
  18. 18.
    Bergman, C., McKenzie, R., & Nagy, Sz. (1982). How to cancel a linearly ordered exponent. Colloquia Mathematica Societatis János Bolyai, 21, 87–94.MathSciNetzbMATHGoogle Scholar
  19. 19.
    Berman, J., & Köhler, P. (1976). Cardinalities of finite distributive lattices. Mitteilungen aus dem Mathematics Seminar Giessen, 121, 103–124.MathSciNetzbMATHGoogle Scholar
  20. 20.
    Bhavale, A. N. (2013). Enumeration of Certain Algebraic Systems and Related Structures. Ph.D. thesis, University of Pune.Google Scholar
  21. 21.
    Birkhoff, G. (1967). Lattice theory (3rd ed.). Providence: AMS Colloquium Publications XXV.zbMATHGoogle Scholar
  22. 22.
    Björner, A. (1981). Homotopy type of posets and lattice complementation. Journal of Combinatorial Theory, Series A, 30, 90–100.MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Blyth, T. (2005). Lattices and ordered algebraic structures. London: Springer.zbMATHGoogle Scholar
  24. 24.
    Bogart, K. P. (1994). Intervals and orders: What comes after interval orders? In V. Bouchitté & M. Morvan (Eds.), Orders, algorithms and applications (Proceedings of the ORDAL ‘94 in Lyon). Lecture notes in computer science (Vol. 831, pp. 13–32). Berlin: Springer.Google Scholar
  25. 25.
    Bogart, K. P., Freese, R., Kung, J. P. S. (Eds.). (1990). The Dilworth theorems: Selected papers of Robert P. Dilworth. Boston: Birkhäuser.Google Scholar
  26. 26.
    Bollobás, B. (1978). Extremal graph theory. London/New York/San Francisco: Academic.zbMATHGoogle Scholar
  27. 27.
    Bollobás, B. (1979). Graph theory. Graduate texts in mathematics (Vol. 63). New York: Springer.Google Scholar
  28. 28.
    Bondy, J. A., & Hemminger, R. L. (1976). Graph reconstruction – A survey. Journal of Graph Theory, 1, 227–268.MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Bordat, J. P. (1992). Sur l’algorithmique combinatoire d’ordres finis. Thèse de Docteur d’état, Université Montpellier II.Google Scholar
  30. 30.
    Bouchitté, V., & Habib, M. (1989). The calculation of invariants for ordered sets. In I. Rival (Ed.), Algorithms and order (pp. 231–279). Dordrecht: Kluwer Academic.CrossRefGoogle Scholar
  31. 31.
    Bouchitté, V., & Morvan, M. (1994). Orders, algorithms and applications (Proceedings of the International Workshop ORDAL ‘94 in Lyon). Lecture notes in computer science (Vol. 831). Berlin: Springer.zbMATHGoogle Scholar
  32. 32.
    Brightwell, G. (1988). Linear extensions of infinite posets. Discrete Mathematics, 70, 113–136.MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Brightwell, G. (1989). Semiorders and the \(\frac{1} {3}-\frac{2} {3}\) conjecture. Order, 5, 369–380.MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Brightwell, G. (1993). On the complexity of diagram testing. Order, 10, 297–303.MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Brightwell, G., & Goodall, S. (1990). The number of partial orders of fixed width. Order, 15, 315–337.MathSciNetzbMATHGoogle Scholar
  36. 36.
    Brightwell, G. R., Felsner, S., & Trotter, W. T. (1995). Balancing pairs and the cross product conjecture. Order, 12, 327–349.MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Brinkmann, G., & McKay, B. (2002). Posets on up to 16 points. Order, 19, 147–179.MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Brown, R. (1982). The fixed point property and Cartesian products. The American Mathematical Monthly, November issue, 654–678.Google Scholar
  39. 39.
    Brualdi, R. A., Jung, H. C., & Trotter, W. T. (1994). On the poset of all posets on n elements. Discrete Applied Mathematics, 50, 111–123.MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Carl, S., & Heikkilä, S. (1992). An existence result for elliptic differential inclusions with discontinuous nonlinearity. Nonlinear Analysis, 18, 471–479.MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Carl, S., & Heikkilä, S. (2011). Fixed point theory in ordered sets and applications; from differential and integral equations to game theory. New York: Springer.zbMATHCrossRefGoogle Scholar
  42. 42.
    Caspard, N., Leclerc, B., & Monjardet, B. (2012). Finite ordered sets, concepts, results and uses. New York: Cambridge University Press.zbMATHGoogle Scholar
  43. 43.
    Chang, C., Jonsson, B., & Tarski, A. (1964). Refinement properties for relational structures. Fundamenta Mathematicae, 55, 249–281.MathSciNetzbMATHGoogle Scholar
  44. 44.
    Chaunier, C., & Lygerōs, N. (1992). The number of orders with thirteen elements. Order, 9, 203–204.MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Chen, P. C. (1992). Heuristic sampling: A method for predicting the performance of tree searching programs. SIAM Journal on Computing, 21, 295–315.zbMATHCrossRefGoogle Scholar
  46. 46.
    Clay Mathematics Institute web site. (2015). http://www.claymath.org/millennium-problems
  47. 47.
    Cohn, D. L. (1980). Measure theory. Boston: Birkhäuser.zbMATHCrossRefGoogle Scholar
  48. 48.
    Constantin, J., & Fournier, G. (1985). Ordonnés escamotables et points fixes. Discrete Mathematics, 53, 21–33.MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Cook, S. A. (1971). The complexity of theorem-proving procedures. In Proceedings of the Third Annual ACM Symposium on Theory of Computing (pp. 151–158). New York: Association for Computing Machinery.Google Scholar
  50. 50.
    Corominas, E. (1990). Sur les ensembles ordonnés projectifs et la propriété du point fixe. Comptes Rendus de l’Académie des Sciences Paris Série I, 311, 199–204.MathSciNetzbMATHGoogle Scholar
  51. 51.
    Cousot, P., & Cousot, R. (1979). Constructive versions of Tarski’s fixed point theorems. Pacific Journal of Mathematics, 82, 43–57.MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Cousot, P., & Cousot, R. (1979). A constructive characterization of the lattices of all retractions, preclosure, quasi-closure and closure operators on a complete lattice. Portugaliae Mathematica, 38, 185–198.MathSciNetzbMATHGoogle Scholar
  53. 53.
    Crapo, H. H. (1982). Ordered sets: Retracts and connections. Journal of Pure and Applied Algebra, 23, 13–28.MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Crawley, P., & Dilworth, R. P. (1973). Algebraic theory of lattices. Englewood Cliffs: Prentice Hall.zbMATHGoogle Scholar
  55. 55.
    Culberson, J. C., & Rawlins, G. J. E. (1991). New results from an algorithm for counting posets. Order, 7, 361–374.MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Davey, B., & Priestley, H. (1990). Introduction to lattices and order. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  57. 57.
    Davidson, J. L. (1986). Asymptotic enumeration of partial orders. Congressus Numerantium, 53, 277–286.MathSciNetGoogle Scholar
  58. 58.
    Davis, A. C. (1955). A characterization of complete lattices. Pacific Journal of Mathematics, 5, 311–319.MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Debruyne, R., & Bessière, C. (1997). Some practicable filtering techniques for the constraint satisfaction problem. In Proceedings of the 15th International Joint Conference on Artificial Intelligence (IJCAI) (pp. 412–417).Google Scholar
  60. 60.
    Dechter, R. (1992). Constraint networks. In S. Shapiro (Ed.), Encyclopedia of artificial intelligence (pp. 276–284). New York: Wiley.Google Scholar
  61. 61.
    Dechter, R., & Pearl, J. (1989). Tree clustering for constraint networks. Artificial Intelligence, 38, 353–366.MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Dieudonné, J. (1960). Foundations of modern analysis. New York/London: Academic.zbMATHGoogle Scholar
  63. 63.
    Dilworth, R. P. (1950). A decomposition theorem for partially ordered sets. Annals of Mathematics, 51, 161–166.MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    Dilworth, R. P. (1990). Chain partitions in ordered sets. In K. P. Bogart, R. Freese, & J. P. S. Kung (Eds.), The Dilworth theorems: Selected papers of Robert P. Dilworth (pp. 1–6). Boston: Birkhäuser.Google Scholar
  65. 65.
    Donalies, M., & Schröder, B. (2000). Performance guarantees and applications for Xia’s algorithm. Discrete Mathematics, 213, 67–86 (Proceedings of the Banach Center Minisemester on Discrete Mathematics, Week on Ordered Sets).Google Scholar
  66. 66.
    Dreesen, B., Poguntke, W., & Winkler, P. (1985). Comparability invariance of the fixed point property. Order, 2, 269–274.MathSciNetzbMATHGoogle Scholar
  67. 67.
    Duffus, D. (1984). Automorphisms and products of ordered sets. Algebra Universalis, 19, 366–369.MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    Duffus, D., & Goddard, T. (1996). The complexity of the fixed point property. Order, 13, 209–218.MathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    Duffus, D., Kierstead, H. A., & Trotter, W. T. (1991). Fibres and ordered set coloring. Journal of Combinatorial Theory, Series A, 58, 158–164.MathSciNetzbMATHCrossRefGoogle Scholar
  70. 70.
    Duffus, D., Łuczak, T., Rödl, V., & Ruciński, A. (1998). Endomorphisms of partially ordered sets. Combinatorics, Probability and Computing, 7, 33–46.MathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    Duffus, D., Poguntke, W., & Rival, I. (1980). Retracts and the fixed point problem for finite partially ordered sets. Canadian Mathematical Bulletin, 23, 231–236.MathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    Duffus, D., & Rival, I. (1978). A logarithmic property for exponents of partially ordered sets. Canadian Journal of Mathematics, 30, 797–807.MathSciNetzbMATHCrossRefGoogle Scholar
  73. 73.
    Duffus, D., & Rival, I. (1981) A structure theory for ordered sets. Discrete Mathematics, 35, 53–118.MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Duffus, D., Rival, I., & Simonovits, M. (1980). Spanning retracts of a partially ordered set. Discrete Mathematics, 32, 1–7.MathSciNetzbMATHCrossRefGoogle Scholar
  75. 75.
    Duffus, D., Rödl, V., Sands, B., & Woodrow, R. (1992). Enumeration of order-preserving maps. Order, 9, 15–29.MathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    Duffus, D., Sands, B., Sauer, N., & Woodrow, R. E. (1991). Two-coloring all two-element maximal antichains. Journal of Combinatorial Theory, Series A, 57, 109–116.MathSciNetzbMATHCrossRefGoogle Scholar
  77. 77.
    Duffus, D., & Sauer, N. (1987). Fixed points of products and the strong fixed point property. Order, 4, 221–231.MathSciNetzbMATHCrossRefGoogle Scholar
  78. 78.
    Dushnik, B., & Miller, E. W. (1941). Partially ordered sets. American Journal of Mathematics, 63, 600–610.MathSciNetzbMATHCrossRefGoogle Scholar
  79. 79.
    Edelman, P. (1979). On a fixed point theorem for partially ordered sets. Discrete Mathematics, 15, 117–119.MathSciNetzbMATHCrossRefGoogle Scholar
  80. 80.
    El-Zahar, M. (1989). Enumeration of ordered sets. In I. Rival (Ed.), Algorithms and order. NATO advanced science institute series c: Mathematical and physical sciences (pp. 327–352). Dordrecht: Kluwer Academic.Google Scholar
  81. 81.
    Erné, M. (1981). Open question on p. 843 of [246].Google Scholar
  82. 82.
    Erné, M., & Stege, K. (1991). Counting finite posets and topologies. Order, 8, 247–265.MathSciNetzbMATHCrossRefGoogle Scholar
  83. 83.
    Ewacha, K., Li, W., & Rival, I. (1991). Order, genus and diagram invariance. Order, 8, 107–113.MathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    Fagin, R. (1976). Probabilities on finite models. Journal of Symbolic Logic, 41, 50–58.MathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    Farley, J. D. (1993). The uniqueness of the core. Order, 10, 129–131.MathSciNetzbMATHCrossRefGoogle Scholar
  86. 86.
    Farley, J. D. (1995). The number of order-preserving maps between fences and crowns. Order, 12, 5–44.MathSciNetzbMATHCrossRefGoogle Scholar
  87. 87.
    Farley, J. D. (1997). Perfect sequences of chain-complete posets. Discrete Mathematics, 167/168, 271–296.Google Scholar
  88. 88.
    Farley, J. D. (1997). The fixed point property for posets of small width. Order, 14, 125–143.MathSciNetzbMATHCrossRefGoogle Scholar
  89. 89.
    Farley, J. D., & Schröder, B. (2001). Strictly order-preserving maps into \(\mathbb{Z}\), II: A 1979 problem of Erné. Order, 18, 381–385.MathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    Felsner, S., & Trotter, W. T. (2000). Dimension, graph and hypergraph coloring. Order, 17, 167–177.MathSciNetzbMATHCrossRefGoogle Scholar
  91. 91.
    Fishburn, P. C. (1985). Interval orders and interval graphs: A study of partially ordered sets New York: Wiley.zbMATHGoogle Scholar
  92. 92.
    Fishburn, P. C., & Trotter, W. T. (1999). Geometric containment orders: A survey, Order, 15, 168–181.MathSciNetzbMATHGoogle Scholar
  93. 93.
    Fofanova, T., Rival, I., & Rutkowski, A. (1994). Dimension 2, fixed points and dismantlable ordered sets. Order, 13, 245–253.MathSciNetzbMATHGoogle Scholar
  94. 94.
    Fofanova, T., & Rutkowski, A. (1987). The fixed point property in ordered sets of width two. Order, 4, 101–106.MathSciNetzbMATHCrossRefGoogle Scholar
  95. 95.
    Forman, R. (1998). Morse theory for cell complexes. Advances in Mathematics, 134, 90–145.MathSciNetzbMATHCrossRefGoogle Scholar
  96. 96.
    Forman, R. (2002). A user’s guide to discrete Morse theory. Séminaire Lotharingien de Combinatoire, 48. Article B48cGoogle Scholar
  97. 97.
    Fouché, W. (1996). Chain partitions of ordered sets. Order, 13, 255–266.MathSciNetzbMATHGoogle Scholar
  98. 98.
    Freese, R., Ježek, J., & Nation, J. (1995). Free lattices. Mathematical surveys and monographs (Vol. 42). Providence: American Mathematical SocietyzbMATHGoogle Scholar
  99. 99.
    Freuder, E. C. (1982). A sufficient condition for backtrack-free search. Journal of the ACM, 29, 24–32.MathSciNetzbMATHCrossRefGoogle Scholar
  100. 100.
    Frías-Armenta, M. E., Neumann-Lara, V., & Pizaña, M. A. (2004). Dismantlings and iterated clique graphs. Discrete Mathematics, 282, 263–265.MathSciNetzbMATHCrossRefGoogle Scholar
  101. 101.
    Gallai, T. (1967). Transitiv orientierbare graphen. Acta Mathematica Hungarica, 18, 25–66.MathSciNetzbMATHCrossRefGoogle Scholar
  102. 102.
    Ganter, B. (2013). Diskrete mathematik: Geordnete mengen. Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  103. 103.
    Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of NP-completeness. San Francisco: Freeman.zbMATHGoogle Scholar
  104. 104.
    Gaschnig, J. (1978). Experimental case studies of backtrack vs. (Waltz)-type vs. new algorithms for satisfying assignment problems. In Proceedings of the Second Canadian Conference on Artificial Intelligence, Toronto (pp. 268–277).Google Scholar
  105. 105.
    Ghouilà-Houri, A. (1962). Caractérisation des graphes nonorientés dont on peut orienter les arêtes de manière à obtenir le graphe d’une relation d’ordre. Comptes Rendus de l’Académie des Sciences Paris, 254, 1370–1371.zbMATHGoogle Scholar
  106. 106.
    Gibson, P., & Zaguia, I. (1998). Endomorphism classes of ordered sets, graphs and lattices. Order, 15, 21–34.MathSciNetzbMATHCrossRefGoogle Scholar
  107. 107.
    Gikas, M. (1986). Fixed points and structural problems in ordered sets. Ph.D. dissertation, Emory University.Google Scholar
  108. 108.
    Gilmore, P., & Hoffman, J. (1963). A characterization of comparability graphs and of interval graphs. Canadian Journal of Mathematics, 16, 539–548.MathSciNetzbMATHCrossRefGoogle Scholar
  109. 109.
    Golumbic, M. (1980). Algorithmic graph theory and perfect graphs. New York: Academic.zbMATHGoogle Scholar
  110. 110.
    Gottlob, G. (2012). On minimal constraint networks. Artificial Intelligence, 191/192, 42–60.Google Scholar
  111. 111.
    Grant, K., Nowakowski, R., & Rival, I. (1995). The endomorphism spectrum of an ordered set. Order, 12, 45–55.MathSciNetzbMATHCrossRefGoogle Scholar
  112. 112.
    Grätzer, G. (1978). General lattice theory. Basel: Birkhäuser.zbMATHCrossRefGoogle Scholar
  113. 113.
    Gurevich, Y., & Shelah, S. (1987). Expected computation time for Hamiltonian path problem. SIAM Journal on Computing, 16(3), 486–502.MathSciNetzbMATHCrossRefGoogle Scholar
  114. 114.
    Gysin, R. (1977). Dimension transitiv orientierbarer Graphen. Acta Mathematica Academiae Scientiarum Hungaricae, 29, 313–316.MathSciNetzbMATHCrossRefGoogle Scholar
  115. 115.
    Habib, M., Morvan, M., Pouzet, M., & Rampon, J.-X. (1993). Interval dimension and MacNeille completion. Order, 10, 147–151.MathSciNetzbMATHCrossRefGoogle Scholar
  116. 116.
    Habib, M., Morvan, M., & Rampon, J.-X. (1993). On the calculation of transitive reduction-closure of orders. Discrete Mathematics, 111, 289–303.MathSciNetzbMATHCrossRefGoogle Scholar
  117. 117.
    Halmos, P. R. (1974). Naive set theory. Undergraduate texts in mathematics. New York: Springer.CrossRefGoogle Scholar
  118. 118.
    Han, C.-C., & Lee, C.-H. (1988). Comments on Mohr and Henderson’s path consistency algorithm. Artificial Intelligence, 36, 125–130.zbMATHCrossRefGoogle Scholar
  119. 119.
    Haralick, R. M., & Elliott, G. L. (1980). Increasing tree search efficiency for constraint satisfaction problems. Artificial Intelligence, 14, 263–313.CrossRefGoogle Scholar
  120. 120.
    Harzheim, E. (2005). Ordered sets. New York: Springer.zbMATHGoogle Scholar
  121. 121.
    Hashimoto, J. (1948). On the product decomposition of partially ordered sets. Mathematica Japonica, 1, 120–123.MathSciNetzbMATHGoogle Scholar
  122. 122.
    Hashimoto, J. (1951). On direct product decomposition of partially ordered sets. Annals of Mathematics, 54(2), 315–318.MathSciNetzbMATHCrossRefGoogle Scholar
  123. 123.
    Hashimoto, J., & Nakayama, T. (1950). On a problem of G. Birkhoff. Proceedings of the American Mathematical Society, 1, 141–142.Google Scholar
  124. 124.
    Hatcher, A. (2002). Algebraic topology. Cambridge: Cambridge University Press. Available at http://www.math.cornell.edu/~hatcher/AT/ATpage.html zbMATHGoogle Scholar
  125. 125.
    Hazan, S. (1992). The Projection Property for Orders and Triangle-Free Graphs. Ph.D. dissertation, Vanderbilt University.Google Scholar
  126. 126.
    Hazan, S. (1996). On triangle-free projective graphs. Algebra Universalis, 35(2), 185–196.MathSciNetzbMATHCrossRefGoogle Scholar
  127. 127.
    Hazan, S., & Neumann-Lara, V. (1995). Fixed points of posets and clique graphs. Order, 13, 219–225.MathSciNetzbMATHGoogle Scholar
  128. 128.
    Hazan, S., & Neumann-Lara, V. (1998). Two order invariants related to the fixed point property. Order, 15, 97–111.MathSciNetzbMATHCrossRefGoogle Scholar
  129. 129.
    Heikkilä, S. (1990). On fixed points through a generalized iteration method with applications to differential and integral equations involving discontinuities. Nonlinear Analysis, 14, 413–426.MathSciNetzbMATHCrossRefGoogle Scholar
  130. 130.
    Heikkilä, S. (1990). On differential equations in ordered Banach spaces with applications to differential systems and random equations. Differential Integral Equations, 3, 589–600.MathSciNetzbMATHGoogle Scholar
  131. 131.
    Heikkilä, S., & Lakhshmikantham, V. (1994). Monotone iterative techniques for discontinuous nonlinear differential equations. New York: Marcel Dekker.Google Scholar
  132. 132.
    Heikkilä, S., & Lakhshmikantham, V. (1995). On mild solutions of first order discontinuous semilinear differential equations in Banach spaces. Applicable Analysis, 56, 131–146.MathSciNetzbMATHCrossRefGoogle Scholar
  133. 133.
    Heikkilä, S., Lakhshmikantham, V., & Sun, Y. (1992). Fixed point results in ordered normed spaces with applications to abstract and differential equations. Journal of Mathematical Analysis and Applications, 163, 422–437.MathSciNetzbMATHCrossRefGoogle Scholar
  134. 134.
    Heitzig, J., & Reinhold, J. (2000). The number of unlabeled orders on fourteen elements. Order, 17, 333–341.MathSciNetzbMATHCrossRefGoogle Scholar
  135. 135.
    Hell, P., & Nešetril, J. (2004). Graphs and homomorphisms. Oxford lecture series in mathematics and its applications (Vol. 28). Oxford: Oxford University Press.CrossRefGoogle Scholar
  136. 136.
    Heuser, H. (1983). Lehrbuch der analysis, Teil 2. Stuttgart: B. G. Teubner.zbMATHGoogle Scholar
  137. 137.
    Hewitt, E., & Stromberg, K. R. (1965). Real and abstract analysis. Springer graduate texts in mathematics (Vol. 25). Berlin/Heidelberg: Springer.Google Scholar
  138. 138.
    Hiraguchi, T. (1955). On the dimension of orders. Science Reports of Kanazawa University, 4, 1–20.MathSciNetzbMATHGoogle Scholar
  139. 139.
    Höft, H., & Höft, M. (1976). Some fixed point theorems for partially ordered sets. Canadian Journal of Mathematics, 28, 992–997.MathSciNetzbMATHCrossRefGoogle Scholar
  140. 140.
    Höft, H., & Höft, M. (1988). Fixed point invariant reductions and a characterization theorem for lexicographic sums. Houston Journal of Mathematics, 14(3), 411–422.MathSciNetzbMATHGoogle Scholar
  141. 141.
    Höft, H., & Höft, M. (1991). Fixed point free components in lexicographic sums with the fixed point property. Demonstratio Mathematica, XXIV, 294–304.Google Scholar
  142. 142.
    Hogg, T., Huberman, B., & Williams, C. (1996). Phase transitions and the search problem. Artificial Intelligence, 81, 1–15.MathSciNetCrossRefGoogle Scholar
  143. 143.
    Hopcroft, J., & Karp, R. (1973). A \(n^{\frac{5} {2} }\) algorithm for maximum matching in bipartite graphs. SIAM Journal on Computing, 2, 225–231.MathSciNetzbMATHCrossRefGoogle Scholar
  144. 144.
    Hughes, J. (2004). The Computation and Comparison of Decks of Small Ordered Sets. MS thesis, Louisiana Tech University.Google Scholar
  145. 145.
    Ille, P. (1993). Recognition problem in reconstruction for decomposable relations. In N. W. Sauer et al. (Eds.), Finite and infinite combinatorics in sets and logic (pp. 189–198). Dordrecht: Kluwer Academic.CrossRefGoogle Scholar
  146. 146.
    Ille, P., & Rampon, J.-X. (1997). Reconstruction of posets with the same comparability graph. Journal of Combinatorial Theory (B), 74, 368–377.MathSciNetzbMATHCrossRefGoogle Scholar
  147. 147.
    Jachymski, J. (2007). The contraction principle for mappings on a metric space with a graph. Proceedings of the American Mathematical Society, 136, 1359–1373.Google Scholar
  148. 148.
    Jawhari, E., Misane, D., & Pouzet, M. (1986). Retracts: Graphs and ordered sets from the metric point of view. In I. Rival (Ed.), Combinatorics and ordered sets. Contemporary mathematics (Vol. 57, pp. 175–226). Providence: American Mathematical Society.Google Scholar
  149. 149.
    Jeavons, P., Cohen, D., & Pearson, J. (1998). Constraints and universal algebra. Annals of Mathematics and Artificial Intelligence, 24, 51–67.MathSciNetzbMATHCrossRefGoogle Scholar
  150. 150.
    Jónsson, B. (1982). Arithmetic of ordered sets. In I. Rival (Ed.), Ordered sets (pp. 3–41). Dordrecht: D. Reidel.CrossRefGoogle Scholar
  151. 151.
    Jónsson, B., & McKenzie, R. (1982). Powers of partially ordered sets: Cancellation and refinement properties. Mathematica Scandinavica, 51, 87–120.MathSciNetzbMATHGoogle Scholar
  152. 152.
    Kahn, J., & Saks, M. (1984). Balancing poset extensions. Order, 1, 113–126.MathSciNetzbMATHCrossRefGoogle Scholar
  153. 153.
    Kelly, D. (1984). Unsolved problems: Removable pairs in dimension theory. Order, 1, 217–218.MathSciNetCrossRefGoogle Scholar
  154. 154.
    Kelly, D. (1985). Comparability graphs. In I. Rival (Ed.), Graphs and order (pp. 3–40). Dordrecht: D. Reidel.CrossRefGoogle Scholar
  155. 155.
    Kelly, D., & Trotter, W. T. (1982). Dimension theory for ordered sets. In I. Rival (Ed.), Ordered sets (pp. 171–211). Dordrecht: D. Reidel.CrossRefGoogle Scholar
  156. 156.
    Kelly, P. J. (1957). A congruence theorem for trees. Pacific Journal of Mathematics, 7, 961–968.MathSciNetzbMATHCrossRefGoogle Scholar
  157. 157.
    Kierstead, H., & Trotter, W. T. (1991). A note on removable pairs. In Y. Alavi et al. (Eds.), Graph theory, combinatorics and applications (Vol. 2, pp. 739–742). New York: Wiley.Google Scholar
  158. 158.
    Kimble, R. (1973). Extremal Problems in Dimension Theory for Partially Ordered Sets. Ph. D. dissertation, MIT.Google Scholar
  159. 159.
    Kinoshita, S. (1953). On some contractible continua without fixed point property. Fundamenta Mathematicae, 40, 96–98.MathSciNetzbMATHGoogle Scholar
  160. 160.
    Kisielewicz, A. (1988). A solution of Dedekind’s problem on the number of isotone Boolean functions. Journal für die Reine und Angewandte Mathematik, 386, 139–144.MathSciNetzbMATHGoogle Scholar
  161. 161.
    Kislitsin, S. S. (1968). Finite partially ordered sets and their associated sets of permutations. Matematicheskiye Zametki, 4, 511–518.Google Scholar
  162. 162.
    Klarner, D. (1969). The number of graded partially ordered sets. Journal of Combinatorial Theory, 6, 12–19.MathSciNetzbMATHCrossRefGoogle Scholar
  163. 163.
    Klarner, D. (1970). The number of classes of isomorphic graded partially ordered sets. Journal of Combinatorial Theory, 9, 412–419.MathSciNetzbMATHCrossRefGoogle Scholar
  164. 164.
    Kleitman, D. J., & Markowsky, G. (1975). On Dedekind’s problem: The number of isotone Boolean functions II. Transactions of the American Mathematical Society, 213, 373–390.MathSciNetzbMATHGoogle Scholar
  165. 165.
    Kleitman, D. J., & Rothschild, B. L. (1970). The number of finite topologies. Proceedings of the American Mathematical Society, 25, 276–282.Google Scholar
  166. 166.
    Kleitman, D. J., & Rothschild, B. L. (1975). Asymptotic enumeration of partial orders on a finite set. Transactions of the American Mathematical Society, 205, 205–220.MathSciNetzbMATHCrossRefGoogle Scholar
  167. 167.
    Knaster, B. (1928). Un théorème sur les fonctions d’ensembles. Annales de la Société Polonaise de Mathématique., 6, 133–134.zbMATHGoogle Scholar
  168. 168.
    Knuth, D. E. (1975). Estimating the efficiency of backtrack programs. Mathematics of Computation, 29, 121–136.MathSciNetzbMATHCrossRefGoogle Scholar
  169. 169.
    Köbler, J., Schöning, U., & Torán, J. (1993). The graph isomorphism problem: Its structural complexity. Progress in theoretical computer science. Boston: Birkhäuser.zbMATHCrossRefGoogle Scholar
  170. 170.
    Kondrak, G., & van Beek, P. (1997). A theoretical evaluation of selected backtracking algorithms. Artificial Intelligence, 89, 365–387.MathSciNetzbMATHCrossRefGoogle Scholar
  171. 171.
    Korshunov, A. (1977). On the number of monotone Boolean functions (in Russian). Problemy Kibernetiki, 38, 5–108.MathSciNetzbMATHGoogle Scholar
  172. 172.
    Kozlov, D. (2008). Combinatorial algebraic topology. New York: Springer.zbMATHCrossRefGoogle Scholar
  173. 173.
    Kratsch, D., & Rampon, J.-X. (1994). A counterexample about poset reconstruction. Order, 11, 95–96.MathSciNetzbMATHCrossRefGoogle Scholar
  174. 174.
    Kratsch, D., & Rampon, J.-X. (1994). Towards the reconstruction of posets. Order, 11, 317–341.MathSciNetzbMATHCrossRefGoogle Scholar
  175. 175.
    Kratsch, D., & Rampon, J.-X. (1996). Width two posets are reconstructible. Discrete Mathematics, 162, 305–310.MathSciNetzbMATHCrossRefGoogle Scholar
  176. 176.
    Kukieła, M., & Schröder, B. (2012). A 2-antichain that is not contained in any finite retract. Algebra Universalis, 67, 59–62.MathSciNetzbMATHCrossRefGoogle Scholar
  177. 177.
    Kumar, V. (1992). Algorithms for constraint satisfaction problems – A survey. AI magazine, 13, 32–44.Google Scholar
  178. 178.
    Kung, J. P. S. (1999). Möbius inversion. Encyclopedia of Mathematics. Available at https://www.encyclopediaofmath.org/index.php/M%C3%B6bius_inversion
  179. 179.
    Langley, L. J. (1995). A recognition algorithm for orders of interval dimension 2, ARIDAM VI and VII (New Brunswick, NJ, 1991/1992). Discrete Applied Mathematics, 60, 257–266.MathSciNetCrossRefGoogle Scholar
  180. 180.
    Larose, B. (1995). Minimal automorphic posets and the projection property. International Journal of Algebra and Computation, 5, 65–80.MathSciNetzbMATHCrossRefGoogle Scholar
  181. 181.
    Larrión, F., Neumann-Lara, V., & Pizaña, M. (2004). Clique divergent clockwork graphs and partial orders. Discrete Applied Mathematics, 141, 195–207.MathSciNetzbMATHCrossRefGoogle Scholar
  182. 182.
    Larrión, F., Pizaña, M., & Villaroel-Flores, R. (2008). Contractibility and the clique graph operator. Discrete Mathematics, 308, 3461–3469.MathSciNetzbMATHCrossRefGoogle Scholar
  183. 183.
    Li, B. (1990). All retraction operators on a lattice need not form a lattice. Journal of Pure and Applied Algebra, 67, 201–208.MathSciNetzbMATHCrossRefGoogle Scholar
  184. 184.
    Li, B. (1993). The core of a chain complete poset with no one-way infinite fence and no tower. Order, 10, 349–361.MathSciNetzbMATHCrossRefGoogle Scholar
  185. 185.
    Li, B. (1996). The ANTI-order for caccc posets – Part I. Discrete Mathematics, 158, 173–184.MathSciNetzbMATHCrossRefGoogle Scholar
  186. 186.
    Li, B. (1996). The ANTI-order for caccc posets – Part II. Discrete Mathematics, 158, 185–199.zbMATHCrossRefGoogle Scholar
  187. 187.
    Li, B., & Milner, E. C. (1992). The PT order and the fixed point property. Order, 9, 321–331.MathSciNetzbMATHCrossRefGoogle Scholar
  188. 188.
    Li, B., & Milner, E. C. (1993). A chain complete poset with no infinite antichain has a finite core. Order, 10, 55–63.MathSciNetzbMATHCrossRefGoogle Scholar
  189. 189.
    Li, B., & Milner, E. C. (1997). The ANTI-order and the fixed point property for caccc posets. Discrete Mathematics, 175, 197–209.MathSciNetzbMATHCrossRefGoogle Scholar
  190. 190.
    Li, B., & Milner, E. C. (1997). Isomorphic ANTI-cores of caccc posets. Discrete Mathematics, 176, 185–195.MathSciNetzbMATHCrossRefGoogle Scholar
  191. 191.
    Lindenstrauss, J., & Tzafriri, L. (1973). Classical Banach spaces. Springer lecture notes in mathematics (Vol. 338). New York: SpringerzbMATHGoogle Scholar
  192. 192.
    Liu, W.-P., & Wan, H. (1993). Automorphisms and isotone self-maps of ordered sets with top and bottom. Order, 10, 105–110.MathSciNetzbMATHCrossRefGoogle Scholar
  193. 193.
    Lonc, Z., & Rival, I. (1987). Chains, antichains and fibres. Journal of Combinatorial Theory, Series A, 44, 207–228.MathSciNetzbMATHCrossRefGoogle Scholar
  194. 194.
    Lovász, L. (1967). Operations with structures. Acta Mathematica Hungarica, 18, 321–328.MathSciNetzbMATHCrossRefGoogle Scholar
  195. 195.
    Lovász, L. (1971). On the cancellation law among finite relational structures. Periodica Mathematica Hungarica, 1, 145–156.MathSciNetzbMATHCrossRefGoogle Scholar
  196. 196.
    Lubiw, A. (1981). Some NP-complete problems similar to graph isomorphisms. SIAM Journal of Computing, 10, 11–21.MathSciNetzbMATHCrossRefGoogle Scholar
  197. 197.
    Luks, E. M. (1982). Isomorphism of graphs of bounded valence can be tested in polynomial time. Journal of Computer and System Science, 25, 42–65.MathSciNetzbMATHCrossRefGoogle Scholar
  198. 198.
    Mackworth, A. K. (1992). Constraint satisfaction. In S. Shapiro (Ed.), Encyclopedia of artificial intelligence (pp. 284–293). New York: Wiley.Google Scholar
  199. 199.
    Maltby, R. (1992). A smallest-fibre-size to poset-size ratio approaching \(\frac{8} {15}\). Journal of Combinatorial Theory (A), 61, 328–330.MathSciNetzbMATHCrossRefGoogle Scholar
  200. 200.
    Maróti, M., & Zádori, L. (2012). Reflexive digraphs with near unanimity polymorphisms. Discrete Mathematics, 312, 2316–2328.MathSciNetzbMATHCrossRefGoogle Scholar
  201. 201.
    McGregor, J. J. (1979). Relational consistency algorithms and their application in finding subgraph and graph isomorphisms. Information Sciences, 19, 229–250.MathSciNetzbMATHCrossRefGoogle Scholar
  202. 202.
    McKay, B. (1997). Small graphs are reconstructible. The Australasian Journal of Combinatorics, 15, 123–126.MathSciNetzbMATHGoogle Scholar
  203. 203.
    McKay, B. D., & Piperno, A. (2013). Practical graph isomorphism, II. Journal of Symbolic Computation, 60, 94–112.MathSciNetzbMATHCrossRefGoogle Scholar
  204. 204.
    McKee, T., & Prisner, E. (1996). An approach to graph-theoretic homology. In Y. Alavi et al. (Eds.), Combinatorics, graph theory, and algorithms. Proceedings of the Eighth Quadrennial International Conference in Graph Theory, Combinatorics, Algorithms and Applications (Vol. II, pp. 631–640).Google Scholar
  205. 205.
    McKenzie, R. (1999). Arithmetic of finite ordered sets: Cancellation of exponents I. Order, 16, 313–333.MathSciNetzbMATHCrossRefGoogle Scholar
  206. 206.
    McKenzie, R. (2000). Arithmetic of finite ordered sets: Cancellation of exponents II. Order, 17, 309–332.MathSciNetzbMATHCrossRefGoogle Scholar
  207. 207.
    Milner, E. C. (1990). Dilworth’s decomposition theorem in the infinite case. In K. P. Bogart, R. Freese, & J. P. S. Kung (Eds.), The Dilworth theorems: Selected papers of Robert P. Dilworth (pp. 30–35). Boston: Birkhäuser.CrossRefGoogle Scholar
  208. 208.
    Mitas, J. (1992). The Structure of Interval Orders. Doctoral dissertation, TH Darmstadt.zbMATHGoogle Scholar
  209. 209.
    Mitas, J. (1995). Interval orders based on arbitrary ordered sets. Discrete Mathematics, 144, 75–95.MathSciNetzbMATHCrossRefGoogle Scholar
  210. 210.
    Mohr, R., & Henderson, T. C. (1986). Arc and path consistency revisited. Artificial Intelligence, 28, 225–233.CrossRefGoogle Scholar
  211. 211.
    Müller, H., & Rampon, J.-X. (1997). Partial orders and their convex subsets. Discrete Mathematics, 165/166, 507–517.Google Scholar
  212. 212.
    Nadel, B. (1989). Constraint satisfaction algorithms. Computational Intelligence, 5, 188–224.CrossRefGoogle Scholar
  213. 213.
    Nešetřil, J., & Rödl, V. (1977). Partitions of finite relational and set systems. Journal of Combinatorial Theory (A), 17, 289–312.MathSciNetzbMATHCrossRefGoogle Scholar
  214. 214.
    Nešetřil, J., & Rödl, V. (1984). Combinatorial partitions of finite posets and lattices. Algebra Universalis, 19, 106–119.MathSciNetzbMATHCrossRefGoogle Scholar
  215. 215.
    Nešetřil, J., & Rödl, V. (1987). Complexity of diagrams. Order, 3, 321–330.MathSciNetzbMATHCrossRefGoogle Scholar
  216. 216.
    Niederle, J. (2008). Forbidden retracts for finite ordered sets of width at most four. Discrete Mathematics, 308, 1774–1784.MathSciNetzbMATHCrossRefGoogle Scholar
  217. 217.
    Nowakowski, R. (1981). Open question on p. 842 of [246].Google Scholar
  218. 218.
    Nowakowski, R., & Rival, I. (1979). A fixed edge theorem for graphs with loops. Journal of Graph Theory, 3, 339–350.MathSciNetzbMATHCrossRefGoogle Scholar
  219. 219.
    Pelczar, A. (1961). On the invariant points of a transformation. Annales Polonici Mathematici, XI, 199–202.Google Scholar
  220. 220.
    Peles, M. A. (1963). On Dilworth’s theorem in the infinite case. Israel Journal of Mathematics, 1, 108–109.MathSciNetCrossRefGoogle Scholar
  221. 221.
    Pickering, D., & Roddy, M. (1992). On the strong fixed point property. Order, 9, 305–310.MathSciNetzbMATHCrossRefGoogle Scholar
  222. 222.
    Polat, N. (1995). Retract-collapsible graphs and invariant subgraph properties. Journal of Graph Theory, 19, 25–44.MathSciNetzbMATHCrossRefGoogle Scholar
  223. 223.
    Poston, T. (1971). Fuzzy Geometry. Ph.D. thesis, University of Warwick.Google Scholar
  224. 224.
    Pouzet, M. (1979). Relations non reconstructible par leurs restrictions. Journal of Combinatorial Theory (B), 26, 22–34.MathSciNetzbMATHCrossRefGoogle Scholar
  225. 225.
    Pretorius, L., & Swanepoel, C. (2000). Partitions of countable posets, papers in honour of Ernest J. Cockayne. Journal of Combinatorial Mathematics and Combinatorial Computing, 33, 289–297.MathSciNetzbMATHGoogle Scholar
  226. 226.
    Priestley, H. A., & Ward, M. P. (1994). A multipurpose backtracking algorithm. Journal of Symbolic Computation, 18, 1–40.MathSciNetCrossRefGoogle Scholar
  227. 227.
    Prisner, E. (1992). Convergence of iterated clique graphs. Discrete Mathematics, 103, 199–207.MathSciNetzbMATHCrossRefGoogle Scholar
  228. 228.
    Prömel, H. J. (1987). Counting unlabeled structures. Journal of Combinatorial Theory, Series A, 44, 83–93.MathSciNetzbMATHCrossRefGoogle Scholar
  229. 229.
    Prosser, P. (1993). Hybrid algorithms for the constraint satisfaction problem. Computational Intelligence, 9, 268–299.CrossRefGoogle Scholar
  230. 230.
    Provan, J. S., & Ball, M. O. (1983). The complexity of counting cuts and of computing the probability that a graph is connected. SIAM Journal on Computing, 12, 777–788.MathSciNetzbMATHCrossRefGoogle Scholar
  231. 231.
    Purdom, P. W. (1978). Tree size by partial backtracking. SIAM Journal on Computing, 7, 481–491.MathSciNetzbMATHCrossRefGoogle Scholar
  232. 232.
    Quackenbush, R. (1986). Unsolved problems: Dedekind’s problem. Order, 2, 415–417.MathSciNetCrossRefGoogle Scholar
  233. 233.
    Quilliot, A. (1983). Homomorphismes, points fixes, rétractions et jeux de poursuite dans les graphes, les ensembles ordonnés et les espaces métriques. Thèse de doctorat d’état, Univ. Paris VI.Google Scholar
  234. 234.
    Quilliot, A. (1983). An application of the Helly property to the partially ordered sets. Journal of Combinatorial Theory (A), 35, 185–198.MathSciNetzbMATHCrossRefGoogle Scholar
  235. 235.
    Quilliot, A. (1985). On the Helly property working as a compactness criterion for graphs. Journal of Combinatorial Theory (A), 40, 186–193.MathSciNetzbMATHCrossRefGoogle Scholar
  236. 236.
    Rabinovitch, I. (1978). The dimension of semiorders, Journal of Combinatorial Theory (Series A), 25, 50–61.MathSciNetzbMATHCrossRefGoogle Scholar
  237. 237.
    Rabinovitch, I. (1978). An upper bound on the dimension of interval orders. Journal of Combinatorial Theory (Series A), 25, 68–71.MathSciNetzbMATHCrossRefGoogle Scholar
  238. 238.
    Rabinovitch, I., & Rival, I. (1979). The rank of a distributive lattice. Discrete Mathematics, 25, 275–279.MathSciNetzbMATHCrossRefGoogle Scholar
  239. 239.
    Ramachandran, S. (1981). On a new digraph reconstruction conjecture. Journal of Combinatorial Theory Series B, 31, 143–149.MathSciNetzbMATHCrossRefGoogle Scholar
  240. 240.
    Rampon, J.-X. (2005). What is reconstruction for ordered sets? Discrete Mathematics, 291, 191–233.MathSciNetzbMATHCrossRefGoogle Scholar
  241. 241.
    Ramsey, F. P. (1930). On a problem of formal logic. Proceedings of the London Mathematical Society, 30(2), 264–286.MathSciNetzbMATHCrossRefGoogle Scholar
  242. 242.
    Reiner, V., & Welker, V. (1999). A homological lower bound for order dimension of lattices. Order, 16, 165–170.MathSciNetzbMATHCrossRefGoogle Scholar
  243. 243.
    Reuter, K. (1989). Removing critical Pairs. Order, 6, 107–118.MathSciNetzbMATHCrossRefGoogle Scholar
  244. 244.
    Rival, I. (1976). A fixed point theorem for finite partially ordered sets. Journal of Combinatorial Theory (A), 21, 309–318.MathSciNetzbMATHCrossRefGoogle Scholar
  245. 245.
    Rival, I. (1982). The retract construction. In I. Rival (Ed.), Ordered sets (pp. 97–122). Dordrecht: Dordrecht-Reidel.CrossRefGoogle Scholar
  246. 246.
    Rival, I. (Ed.). (1982). Ordered sets. Boston: Dordrecht-ReidelzbMATHGoogle Scholar
  247. 247.
    Rival, I. (Ed.). (1984). Graphs and order. Boston: Dordrecht-Reidel.Google Scholar
  248. 248.
    Rival, I. (1984). The diagram. In I. Rival (Ed.), Graphs and order (pp. 103–136). Dordrecht: Dordrecht-Reidel.Google Scholar
  249. 249.
    Rival, I. (1985). Unsolved problems: The diagram. Order, 2, 101–104.MathSciNetCrossRefGoogle Scholar
  250. 250.
    Rival, I. (1985). Unsolved problems: The fixed point property. Order, 2, 219–221.MathSciNetCrossRefGoogle Scholar
  251. 251.
    Rival, I. (Ed.). (1986). Combinatorics and ordered sets. In Proceedings of the AMS-IMS-SIAM Summer Research Conference at Humboldt State University, Contemporary Mathematics (Vol. 57). Providence: American Mathematical Society.Google Scholar
  252. 252.
    Rival, I. (Ed.). (1989). Algorithms and order. Dordrecht/Boston: Kluwer.zbMATHGoogle Scholar
  253. 253.
    Rival, I., & Rutkowski, A. (1991). Does almost every isotone self-map have a fixed point? In Extremal problems for finite sets. Bolyai mathematical society studies (Vol. 3, pp. 413–422). Hungary: Viségrad.Google Scholar
  254. 254.
    Rival, I., & Zaguia, N. (Eds.). (1999). ORDAL ‘96, Papers from the Conference on Orders Algorithms and Applications, Ottawa, 1996. Theoretical computer science (Vol. 217). Amsterdam: Elsevier Science Publishers.Google Scholar
  255. 255.
    Roddy, M. (1994). Fixed points and products. Order, 11, 11–14.MathSciNetzbMATHCrossRefGoogle Scholar
  256. 256.
    Roddy, M. (2002). Fixed points and products: Width 3. Order, 19, 319–326.MathSciNetzbMATHCrossRefGoogle Scholar
  257. 257.
    Roddy, M. (2002). On an example of Rutkowski and Schröder. Order, 19, 365–366.MathSciNetzbMATHCrossRefGoogle Scholar
  258. 258.
    Roddy, M., & Schröder, B. (2005). Isotone relations revisited. Discrete Mathematics, 290, 229–248.MathSciNetzbMATHCrossRefGoogle Scholar
  259. 259.
    Rödl, V., & Thoma, L. (1995). The complexity of cover graph recognition for some varieties of finite lattices. Order, 12, 351–374.MathSciNetzbMATHCrossRefGoogle Scholar
  260. 260.
    Rossi, F., van Beek, P., & Walsh, T. (2006). Handbook of constraint programming. Amsterdam: Elsevier.zbMATHGoogle Scholar
  261. 261.
    Rota, G.-C. (1964). On the foundations of combinatorial theory I: Theory of Möbius functions. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 2, 340–368.MathSciNetzbMATHCrossRefGoogle Scholar
  262. 262.
    Rutkowski, A. (1986). Cores, cutsets and the fixed point property. Order, 3, 257–267.MathSciNetzbMATHCrossRefGoogle Scholar
  263. 263.
    Rutkowski, A. (1986). The fixed point property for sums of posets. Demonstratio Mathematica, 4, 1077–1088.MathSciNetzbMATHGoogle Scholar
  264. 264.
    Rutkowski, A. (1989). The fixed point property for small sets. Order, 6, 1–14.MathSciNetzbMATHCrossRefGoogle Scholar
  265. 265.
    Rutkowski, A., private communication.Google Scholar
  266. 266.
    Rutkowski, A., & Schröder, B. (1994). Retractability and the fixed point property for products. Order, 11, 353–359.MathSciNetzbMATHCrossRefGoogle Scholar
  267. 267.
    Sabin, D., & Freuder, E. C. (1994). Contradicting conventional wisdom in constraint satisfaction. In Proceedings of the 11th European Conference on Artificial Intelligence, Amsterdam (pp. 125–129).Google Scholar
  268. 268.
    Saks, M. (1985). Unsolved problems: Balancing linear extensions of ordered sets. Order, 2, 327–330.MathSciNetGoogle Scholar
  269. 269.
    Sands, B. (1985). Unsolved problems. Order, 1, 311–313.MathSciNetCrossRefGoogle Scholar
  270. 270.
    Schröder, B. (1993). Fixed point property for 11-element sets. Order, 10, 329–347.MathSciNetzbMATHCrossRefGoogle Scholar
  271. 271.
    Schröder, B. (1995). On retractable sets and the fixed point property. Algebra Universalis, 33, 149–158.MathSciNetzbMATHCrossRefGoogle Scholar
  272. 272.
    Schröder, B. (1996). Fixed cliques and generalizations of dismantlability. In Y. Alavi et al. (Eds.), Combinatorics, graph theory, and algorithms. Proceedings of the Eighth Quadrennial International Conference in Graph Theory, Combinatorics, Algorithms and Applications (Vol. II, pp. 747–756).Google Scholar
  273. 273.
    Schröder, B. (1998). On cc-comparability invariance of the fixed point property. Discrete Mathematics, 179, 167–183.MathSciNetzbMATHCrossRefGoogle Scholar
  274. 274.
    Schröder, B. (2000). The uniqueness of cores for chain-complete ordered sets. Order, 17, 207–214.MathSciNetzbMATHCrossRefGoogle Scholar
  275. 275.
    Schröder, B. (2000). Reconstruction of the neighborhood deck of ordered sets. Order, 17, 255–269.MathSciNetzbMATHCrossRefGoogle Scholar
  276. 276.
    Schröder, B. (2001). Reconstruction of N-free ordered sets. Order, 18, 61–68.MathSciNetzbMATHCrossRefGoogle Scholar
  277. 277.
    Schröder, B. (2002). Examples on ordered set reconstruction. Order, 19, 283–294.MathSciNetzbMATHCrossRefGoogle Scholar
  278. 278.
    Schröder, B. (2003). On ordered sets with isomorphic marked maximal cards. Order, 20, 299–327.MathSciNetzbMATHCrossRefGoogle Scholar
  279. 279.
    Schröder, B. (2004). More examples on ordered set reconstruction. Discrete Mathematics, 280, 149–163.MathSciNetzbMATHCrossRefGoogle Scholar
  280. 280.
    Schröder, B. (2005). The automorphism conjecture for small sets and series parallel sets. Order, 22, 371–387.MathSciNetzbMATHCrossRefGoogle Scholar
  281. 281.
    Schröder, B. (2006). Examples of powers of ordered sets with the fixed point property. Order, 23, 211–219.MathSciNetzbMATHCrossRefGoogle Scholar
  282. 282.
    Schröder, B. (2007). Mathematical analysis – A concise introduction. Hoboken: Wiley.zbMATHCrossRefGoogle Scholar
  283. 283.
    Schröder, B. (2010). Fundamentals of mathematics – An introduction to proofs, logic, sets and numbers. Hoboken: Wiley.zbMATHGoogle Scholar
  284. 284.
    Schröder, B. (2010). Pseudo-similar points in ordered sets. Discrete Mathematics, 310, 2815–2823.MathSciNetzbMATHCrossRefGoogle Scholar
  285. 285.
    Schröder, B. (2012). The fixed point property for ordered sets. Arabian Journal of Mathematics, 1, 529–547.MathSciNetzbMATHCrossRefGoogle Scholar
  286. 286.
    Schröder, B. (2015). Homomorphic constraint satisfaction problem solver. http://www.math.usm.edu/schroeder/software.htm Google Scholar
  287. 287.
    Schröder, B. (2015). The fixed vertex property for graphs. Order, 32, 363–377.MathSciNetzbMATHCrossRefGoogle Scholar
  288. 288.
    Schröder, B. (2015). The fixed point property for ordered sets of interval dimension 2 (submitted to order).Google Scholar
  289. 289.
    Schröder, B. (2016). The use of retractions in the fixed point theory for ordered sets. In M. Alfuraidan, & Q. H. Ansari (Eds.), Fixed point theory and graph theory – Foundations and integrative approaches (pp. 365–417). Amsterdam: Elsevier. Chapter in the Proceedings of the Workshop on Fixed Point Theory and Applications, King Fahd University of Petroleum and Minerals, December 2014, Dhahran, Saudi Arabia.Google Scholar
  290. 290.
    Schröder, B. (2016). Applications of dismantlability in analysis (in preparation).Google Scholar
  291. 291.
    Scott, D., & Suppes, P. (1958). Foundational aspects of theories of measurement. Journal of Symbolic Logic, 23, 113–128.MathSciNetzbMATHCrossRefGoogle Scholar
  292. 292.
    Segev, Y. (1994). Some remarks on finite 1-acyclic and collapsible complexes. Journal of Combinatorial Theory, Series A, 65, 137–150.MathSciNetzbMATHCrossRefGoogle Scholar
  293. 293.
    Smith, B., & Dyer, M. (1996). Locating the phase transition in binary constraint satisfaction problems. Artificial Intelligence, 81, 155–181.MathSciNetCrossRefGoogle Scholar
  294. 294.
    Smithson, R. E. (1971). Fixed points of order-preserving multifunctions. Proceedings of the American Mathematical Society, 28, 304–310.Google Scholar
  295. 295.
    Spanier, E. H. (1966). Algebraic topology. New York: Springer.zbMATHGoogle Scholar
  296. 296.
    Spinrad, J. (1988). Subdivision and lattices. Order, 5, 143–147.MathSciNetzbMATHCrossRefGoogle Scholar
  297. 297.
    Stanley, R. P. (1979). Balanced Cohen-Macauley complexes. Transactions of the American Mathematical Society, 249, 139–157.MathSciNetzbMATHCrossRefGoogle Scholar
  298. 298.
    Stockmeyer, P. K. (1977). The falsity of the reconstruction conjecture for tournaments. Journal of Graph Theory, 1, 19–25. Erratum: Journal of Graph Theory, 62, 199–200 (2009).Google Scholar
  299. 299.
    Stockmeyer, P. K. (1981). A census of non-reconstructible digraphs. I: Six related families. Journal of Combinatorial Theory (B), 31, 232–239.MathSciNetzbMATHCrossRefGoogle Scholar
  300. 300.
    Stockmeyer, P. K. (1988). Tilting at windmills, or My quest for nonreconstructible graphs; 250th anniversary conference on graph theory (Fort Wayne, IN, 1986). Congressus Numerantium, 63, 188–200.MathSciNetGoogle Scholar
  301. 301.
    Stong, R. E. (1966). Finite topological spaces. Transactions of the American Mathematical Society, 123, 325–340.MathSciNetzbMATHCrossRefGoogle Scholar
  302. 302.
    Sysło, M. (1984). A graph theoretic approach to the jump-number problem. In I. Rival (Ed.), Graphs and order (pp. 185–215). Boston: Dordrecht-Reidel.Google Scholar
  303. 303.
    Szpilrajn, E. (1930). Sur l’extension de l’ordre partiel. Fundamenta Mathematicae, 16, 386–389.zbMATHGoogle Scholar
  304. 304.
    Szymik, M. (2015). Homotopies and the universal fixed point. Order, 32, 301–311.MathSciNetzbMATHCrossRefGoogle Scholar
  305. 305.
    Tancer, M. (2010). d-Collapsibility is NP-complete for d ≥ 4. Chicago Journal of Theoretical Computer Science, 2010, 28 pp. Article 3Google Scholar
  306. 306.
    Tancer, M. (2012). Recognition of collapsible complexes is NP-complete. Available at http://arxiv.org/abs/1211.6254 zbMATHGoogle Scholar
  307. 307.
    Tarski, A. (1955). A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics, 5, 285–309.MathSciNetzbMATHCrossRefGoogle Scholar
  308. 308.
    Thakare, N., Pawar, M., & Waphare, B. (2002). A structure theorem for dismantlable lattices and enumeration. Periodica Mathematica Hungarica, 45, 147–160.MathSciNetzbMATHCrossRefGoogle Scholar
  309. 309.
    Trotter, W. T. (1975). Inequalities in dimension theory for posets. Proceedings of the American Mathematical Society, 47, 311–316.Google Scholar
  310. 310.
    Trotter, W. T. (1976). A forbidden subposet characterization of an order dimension inequality. Mathematical Systems Theory, 10, 91–96.MathSciNetzbMATHCrossRefGoogle Scholar
  311. 311.
    Trotter, W. T. (1992). Combinatorics and partially ordered sets: Dimension theory. Baltimore: Johns Hopkins University Press.zbMATHGoogle Scholar
  312. 312.
    Trotter, W. T., Moore, J. I., & Sumner, D. P. (1976). The dimension of a comparability graph. Proceedings of the American Mathematical Society, 60, 35–38.Google Scholar
  313. 313.
    Tsang, E. (1993). Foundations of constraint satisfaction. New York: Academic. Out of print. Now available through Amazon books on demand, see http://www.bracil.net/edward/FCS.html Google Scholar
  314. 314.
    Tverberg, H. (1967). On Dilworth’s theorem for partially ordered sets. Journal of Combinatorial Theory, 3, 305–306.MathSciNetzbMATHCrossRefGoogle Scholar
  315. 315.
    van Beek, P., & Dechter, R. (1995). On the minimality of row-convex constraint networks. Journal of the ACM, 42, 543–561.MathSciNetzbMATHCrossRefGoogle Scholar
  316. 316.
    von Rimscha, M. (1983). Reconstructibility and perfect graphs. Discrete Mathematics, 47, 79–90.MathSciNetzbMATHGoogle Scholar
  317. 317.
    Wagon, S. (1993). The Banach-Tarski paradox. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  318. 318.
    Walker, J. W. (1984). Isotone relations and the fixed point property for posets. Discrete Mathematics, 48, 275–288.MathSciNetzbMATHCrossRefGoogle Scholar
  319. 319.
    West, D. (1985). Parameters of partial orders and graphs: Packing, covering and representation. In I. Rival (Ed.), Graphs and orders (pp. 267–350). Dordrecht: Dordrecht-Reidel.CrossRefGoogle Scholar
  320. 320.
    West, D. (1996). Introduction to graph theory. Upper Saddle River: Prentice Hall.zbMATHGoogle Scholar
  321. 321.
    Whitehead, J. H. C. (1939). Simplicial spaces, nuclei and m-groups. Proceedings of the London Mathematical Society, 45(2), 243–327.MathSciNetzbMATHCrossRefGoogle Scholar
  322. 322.
    Wiedemann, D. (1991). A computation of the eighth Dedekind number. Order, 8, 5–6.MathSciNetzbMATHCrossRefGoogle Scholar
  323. 323.
    Wild, M. (1992). Cover-preserving order embeddings into Boolean lattices. Order, 9, 209–232.MathSciNetzbMATHCrossRefGoogle Scholar
  324. 324.
    Wilf, H. S. (1994). Generating functionology. New York: Academic.Google Scholar
  325. 325.
    Willard, S. (1970). General topology. Reading: Addison-Wesley.zbMATHGoogle Scholar
  326. 326.
    Williams, C., & Hogg, T. (1994). Exploiting the deep structure of constraint problems. Artificial Intelligence, 70, 73–117.zbMATHCrossRefGoogle Scholar
  327. 327.
    Williamson, S. (1992). Fixed Point Properties in Ordered Sets. Ph. D. dissertation, Emory University.Google Scholar
  328. 328.
    Xia, W. (1992). Fixed point property and formal concept analysis. Order, 9, 255–264.MathSciNetzbMATHCrossRefGoogle Scholar
  329. 329.
    Yannakakis, M. (1982). On the complexity of the partial order dimension problem. SIAM Journal of Algebra and Discrete Mathematics, 3, 351–358.MathSciNetzbMATHCrossRefGoogle Scholar
  330. 330.
    Zádori, L. (1992). Order varieties generated by finite posets. Order, 8, 341–348.MathSciNetzbMATHCrossRefGoogle Scholar
  331. 331.
    Zádori, L. (1998). Characterizing finite irreducible relational sets. Acta Scientiarum Mathematicarum (Szeged), 64, 455–462.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Bernd Schröder
    • 1
  1. 1.Department of MathematicsUniversity of Southern MississippiHattiesburgUSA

Personalised recommendations