Ordered Sets pp 1-21

# Basics

• Bernd Schröder
Chapter

## Abstract

Few prerequisites are needed to read this text. You should be familiar with real numbers, functions, sets, and relations. Moreover, the elusive property known as “mathematical maturity” should have been developed to the point that you can read and understand proofs and produce simple proofs. Texts that develop these skills are, for example, [117, 283]. A background in graph theory helps, but is not necessary.

## Keywords

Binary Relation Order Relation Transitive Closure Order Theory Point Property
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. 1.
Abian, A. (1971). Fixed point theorems of the mappings of partially ordered sets. Rendiconti del Circolo Mathematico di Palermo, 20, 139–142.
2. 2.
Abian, S., & Brown, A. B. (1961). A theorem on partially ordered sets with applications to fixed point theorems. Canadian Journal of Mathematics, 13, 78–82.
3. 3.
Adámek, J., Herrlich, H., & Strecker, G. (1990). Abstract and concrete categories. New York: Wiley.
4. 4.
Aeschlimann, R., & Schmidt, J. (1992). Drawing orders using less ink. Order, 9, 5–13.
5. 5.
Aho, A. V., Hopcroft, J. E., & Ullman, J. D. (1983). Data structures and algorithms. Reading: Addison-Wesley.
6. 6.
Alvarez, L. (1965). Undirected graphs realizable as graphs of modular lattices. Canadian Journal of Mathematics, 17, 923–932.
7. 7.
Arditti, J. C. (1976). Graphes de comparabilité et dimension des ordres. Notes de Recherches, CRM 607. Centre de Recherches Mathématiques Université de Montréal.Google Scholar
8. 8.
Arditti, J. C., & Jung, H. A. (1980). The dimension of finite and infinite comparability graphs. Journal of the London Mathematical Society, 21(2), 31–38.
9. 9.
Bacchus, F., & Grove, A. (1995). On the forward checking algorithm. In Principles and practices in constraint programming (CP-95). Lecture notes in computer science (Vol. 976, pp. 292–309). Berlin: Springer. Available at http://www.cs.toronto.edu/~fbacchus/on-line.html
10. 10.
Baclawski, K. (1977). Galois connections and the Leray spectral sequence. Advances in Mathematics, 25, 191–215.
11. 11.
Baclawski, K. (2012). A combinatorial proof of a fixed point property. Journal of Combinatorial Theory, Series A, 119, 994–1013.
12. 12.
Baclawski, K., & Björner, A. (1979). Fixed points in partially ordered sets. Advances in Mathematics, 31, 263–287.
13. 13.
Balof, B., & Bogart, K. (2003). Simple inductive proofs of the Fishburn and Mirkin theorem and the Scott–Suppes theorem. Order, 20, 49–51.
14. 14.
Bandelt, H. J., & van de Vel, M. (1987). A fixed cube theorem for median graphs. Discrete Mathematics, 67, 129–137.
15. 15.
Barmak, J. (2011). Algebraic topology of finite topological spaces and applications. Lecture notes in mathematics (Vol. 2032). Heidelberg: Springer.
16. 16.
Bélanger, M. F., Constantin, J., & Fournier, G. (1994). Graphes et ordonnés démontables, propriété de la clique fixe. Discrete Mathematics, 130, 9–17.
17. 17.
Benedetti, B., & Lutz, F. (2013). The dunce hat in a minimal non-extendably collapsible 3-ball. Electronic Geometry Model No. 2013.10.001. Available at http://www.eg-models.de/models/Polytopal_Complexes/2013.10.001/_direct_link.html and at http://arxiv.org/abs/0912.3723
18. 18.
Bergman, C., McKenzie, R., & Nagy, Sz. (1982). How to cancel a linearly ordered exponent. Colloquia Mathematica Societatis János Bolyai, 21, 87–94.
19. 19.
Berman, J., & Köhler, P. (1976). Cardinalities of finite distributive lattices. Mitteilungen aus dem Mathematics Seminar Giessen, 121, 103–124.
20. 20.
Bhavale, A. N. (2013). Enumeration of Certain Algebraic Systems and Related Structures. Ph.D. thesis, University of Pune.Google Scholar
21. 21.
Birkhoff, G. (1967). Lattice theory (3rd ed.). Providence: AMS Colloquium Publications XXV.
22. 22.
Björner, A. (1981). Homotopy type of posets and lattice complementation. Journal of Combinatorial Theory, Series A, 30, 90–100.
23. 23.
Blyth, T. (2005). Lattices and ordered algebraic structures. London: Springer.
24. 24.
Bogart, K. P. (1994). Intervals and orders: What comes after interval orders? In V. Bouchitté & M. Morvan (Eds.), Orders, algorithms and applications (Proceedings of the ORDAL ‘94 in Lyon). Lecture notes in computer science (Vol. 831, pp. 13–32). Berlin: Springer.Google Scholar
25. 25.
Bogart, K. P., Freese, R., Kung, J. P. S. (Eds.). (1990). The Dilworth theorems: Selected papers of Robert P. Dilworth. Boston: Birkhäuser.Google Scholar
26. 26.
Bollobás, B. (1978). Extremal graph theory. London/New York/San Francisco: Academic.
27. 27.
Bollobás, B. (1979). Graph theory. Graduate texts in mathematics (Vol. 63). New York: Springer.Google Scholar
28. 28.
Bondy, J. A., & Hemminger, R. L. (1976). Graph reconstruction – A survey. Journal of Graph Theory, 1, 227–268.
29. 29.
Bordat, J. P. (1992). Sur l’algorithmique combinatoire d’ordres finis. Thèse de Docteur d’état, Université Montpellier II.Google Scholar
30. 30.
Bouchitté, V., & Habib, M. (1989). The calculation of invariants for ordered sets. In I. Rival (Ed.), Algorithms and order (pp. 231–279). Dordrecht: Kluwer Academic.
31. 31.
Bouchitté, V., & Morvan, M. (1994). Orders, algorithms and applications (Proceedings of the International Workshop ORDAL ‘94 in Lyon). Lecture notes in computer science (Vol. 831). Berlin: Springer.
32. 32.
Brightwell, G. (1988). Linear extensions of infinite posets. Discrete Mathematics, 70, 113–136.
33. 33.
Brightwell, G. (1989). Semiorders and the $$\frac{1} {3}-\frac{2} {3}$$ conjecture. Order, 5, 369–380.
34. 34.
Brightwell, G. (1993). On the complexity of diagram testing. Order, 10, 297–303.
35. 35.
Brightwell, G., & Goodall, S. (1990). The number of partial orders of fixed width. Order, 15, 315–337.
36. 36.
Brightwell, G. R., Felsner, S., & Trotter, W. T. (1995). Balancing pairs and the cross product conjecture. Order, 12, 327–349.
37. 37.
Brinkmann, G., & McKay, B. (2002). Posets on up to 16 points. Order, 19, 147–179.
38. 38.
Brown, R. (1982). The fixed point property and Cartesian products. The American Mathematical Monthly, November issue, 654–678.Google Scholar
39. 39.
Brualdi, R. A., Jung, H. C., & Trotter, W. T. (1994). On the poset of all posets on n elements. Discrete Applied Mathematics, 50, 111–123.
40. 40.
Carl, S., & Heikkilä, S. (1992). An existence result for elliptic differential inclusions with discontinuous nonlinearity. Nonlinear Analysis, 18, 471–479.
41. 41.
Carl, S., & Heikkilä, S. (2011). Fixed point theory in ordered sets and applications; from differential and integral equations to game theory. New York: Springer.
42. 42.
Caspard, N., Leclerc, B., & Monjardet, B. (2012). Finite ordered sets, concepts, results and uses. New York: Cambridge University Press.
43. 43.
Chang, C., Jonsson, B., & Tarski, A. (1964). Refinement properties for relational structures. Fundamenta Mathematicae, 55, 249–281.
44. 44.
Chaunier, C., & Lygerōs, N. (1992). The number of orders with thirteen elements. Order, 9, 203–204.
45. 45.
Chen, P. C. (1992). Heuristic sampling: A method for predicting the performance of tree searching programs. SIAM Journal on Computing, 21, 295–315.
46. 46.
Clay Mathematics Institute web site. (2015). http://www.claymath.org/millennium-problems
47. 47.
Cohn, D. L. (1980). Measure theory. Boston: Birkhäuser.
48. 48.
Constantin, J., & Fournier, G. (1985). Ordonnés escamotables et points fixes. Discrete Mathematics, 53, 21–33.
49. 49.
Cook, S. A. (1971). The complexity of theorem-proving procedures. In Proceedings of the Third Annual ACM Symposium on Theory of Computing (pp. 151–158). New York: Association for Computing Machinery.Google Scholar
50. 50.
Corominas, E. (1990). Sur les ensembles ordonnés projectifs et la propriété du point fixe. Comptes Rendus de l’Académie des Sciences Paris Série I, 311, 199–204.
51. 51.
Cousot, P., & Cousot, R. (1979). Constructive versions of Tarski’s fixed point theorems. Pacific Journal of Mathematics, 82, 43–57.
52. 52.
Cousot, P., & Cousot, R. (1979). A constructive characterization of the lattices of all retractions, preclosure, quasi-closure and closure operators on a complete lattice. Portugaliae Mathematica, 38, 185–198.
53. 53.
Crapo, H. H. (1982). Ordered sets: Retracts and connections. Journal of Pure and Applied Algebra, 23, 13–28.
54. 54.
Crawley, P., & Dilworth, R. P. (1973). Algebraic theory of lattices. Englewood Cliffs: Prentice Hall.
55. 55.
Culberson, J. C., & Rawlins, G. J. E. (1991). New results from an algorithm for counting posets. Order, 7, 361–374.
56. 56.
Davey, B., & Priestley, H. (1990). Introduction to lattices and order. Cambridge: Cambridge University Press.
57. 57.
Davidson, J. L. (1986). Asymptotic enumeration of partial orders. Congressus Numerantium, 53, 277–286.
58. 58.
Davis, A. C. (1955). A characterization of complete lattices. Pacific Journal of Mathematics, 5, 311–319.
59. 59.
Debruyne, R., & Bessière, C. (1997). Some practicable filtering techniques for the constraint satisfaction problem. In Proceedings of the 15th International Joint Conference on Artificial Intelligence (IJCAI) (pp. 412–417).Google Scholar
60. 60.
Dechter, R. (1992). Constraint networks. In S. Shapiro (Ed.), Encyclopedia of artificial intelligence (pp. 276–284). New York: Wiley.Google Scholar
61. 61.
Dechter, R., & Pearl, J. (1989). Tree clustering for constraint networks. Artificial Intelligence, 38, 353–366.
62. 62.
Dieudonné, J. (1960). Foundations of modern analysis. New York/London: Academic.
63. 63.
Dilworth, R. P. (1950). A decomposition theorem for partially ordered sets. Annals of Mathematics, 51, 161–166.
64. 64.
Dilworth, R. P. (1990). Chain partitions in ordered sets. In K. P. Bogart, R. Freese, & J. P. S. Kung (Eds.), The Dilworth theorems: Selected papers of Robert P. Dilworth (pp. 1–6). Boston: Birkhäuser.Google Scholar
65. 65.
Donalies, M., & Schröder, B. (2000). Performance guarantees and applications for Xia’s algorithm. Discrete Mathematics, 213, 67–86 (Proceedings of the Banach Center Minisemester on Discrete Mathematics, Week on Ordered Sets).Google Scholar
66. 66.
Dreesen, B., Poguntke, W., & Winkler, P. (1985). Comparability invariance of the fixed point property. Order, 2, 269–274.
67. 67.
Duffus, D. (1984). Automorphisms and products of ordered sets. Algebra Universalis, 19, 366–369.
68. 68.
Duffus, D., & Goddard, T. (1996). The complexity of the fixed point property. Order, 13, 209–218.
69. 69.
Duffus, D., Kierstead, H. A., & Trotter, W. T. (1991). Fibres and ordered set coloring. Journal of Combinatorial Theory, Series A, 58, 158–164.
70. 70.
Duffus, D., Łuczak, T., Rödl, V., & Ruciński, A. (1998). Endomorphisms of partially ordered sets. Combinatorics, Probability and Computing, 7, 33–46.
71. 71.
Duffus, D., Poguntke, W., & Rival, I. (1980). Retracts and the fixed point problem for finite partially ordered sets. Canadian Mathematical Bulletin, 23, 231–236.
72. 72.
Duffus, D., & Rival, I. (1978). A logarithmic property for exponents of partially ordered sets. Canadian Journal of Mathematics, 30, 797–807.
73. 73.
Duffus, D., & Rival, I. (1981) A structure theory for ordered sets. Discrete Mathematics, 35, 53–118.
74. 74.
Duffus, D., Rival, I., & Simonovits, M. (1980). Spanning retracts of a partially ordered set. Discrete Mathematics, 32, 1–7.
75. 75.
Duffus, D., Rödl, V., Sands, B., & Woodrow, R. (1992). Enumeration of order-preserving maps. Order, 9, 15–29.
76. 76.
Duffus, D., Sands, B., Sauer, N., & Woodrow, R. E. (1991). Two-coloring all two-element maximal antichains. Journal of Combinatorial Theory, Series A, 57, 109–116.
77. 77.
Duffus, D., & Sauer, N. (1987). Fixed points of products and the strong fixed point property. Order, 4, 221–231.
78. 78.
Dushnik, B., & Miller, E. W. (1941). Partially ordered sets. American Journal of Mathematics, 63, 600–610.
79. 79.
Edelman, P. (1979). On a fixed point theorem for partially ordered sets. Discrete Mathematics, 15, 117–119.
80. 80.
El-Zahar, M. (1989). Enumeration of ordered sets. In I. Rival (Ed.), Algorithms and order. NATO advanced science institute series c: Mathematical and physical sciences (pp. 327–352). Dordrecht: Kluwer Academic.Google Scholar
81. 81.
Erné, M. (1981). Open question on p. 843 of [246].Google Scholar
82. 82.
Erné, M., & Stege, K. (1991). Counting finite posets and topologies. Order, 8, 247–265.
83. 83.
Ewacha, K., Li, W., & Rival, I. (1991). Order, genus and diagram invariance. Order, 8, 107–113.
84. 84.
Fagin, R. (1976). Probabilities on finite models. Journal of Symbolic Logic, 41, 50–58.
85. 85.
Farley, J. D. (1993). The uniqueness of the core. Order, 10, 129–131.
86. 86.
Farley, J. D. (1995). The number of order-preserving maps between fences and crowns. Order, 12, 5–44.
87. 87.
Farley, J. D. (1997). Perfect sequences of chain-complete posets. Discrete Mathematics, 167/168, 271–296.Google Scholar
88. 88.
Farley, J. D. (1997). The fixed point property for posets of small width. Order, 14, 125–143.
89. 89.
Farley, J. D., & Schröder, B. (2001). Strictly order-preserving maps into $$\mathbb{Z}$$, II: A 1979 problem of Erné. Order, 18, 381–385.
90. 90.
Felsner, S., & Trotter, W. T. (2000). Dimension, graph and hypergraph coloring. Order, 17, 167–177.
91. 91.
Fishburn, P. C. (1985). Interval orders and interval graphs: A study of partially ordered sets New York: Wiley.
92. 92.
Fishburn, P. C., & Trotter, W. T. (1999). Geometric containment orders: A survey, Order, 15, 168–181.
93. 93.
Fofanova, T., Rival, I., & Rutkowski, A. (1994). Dimension 2, fixed points and dismantlable ordered sets. Order, 13, 245–253.
94. 94.
Fofanova, T., & Rutkowski, A. (1987). The fixed point property in ordered sets of width two. Order, 4, 101–106.
95. 95.
Forman, R. (1998). Morse theory for cell complexes. Advances in Mathematics, 134, 90–145.
96. 96.
Forman, R. (2002). A user’s guide to discrete Morse theory. Séminaire Lotharingien de Combinatoire, 48. Article B48cGoogle Scholar
97. 97.
Fouché, W. (1996). Chain partitions of ordered sets. Order, 13, 255–266.
98. 98.
Freese, R., Ježek, J., & Nation, J. (1995). Free lattices. Mathematical surveys and monographs (Vol. 42). Providence: American Mathematical Society
99. 99.
Freuder, E. C. (1982). A sufficient condition for backtrack-free search. Journal of the ACM, 29, 24–32.
100. 100.
Frías-Armenta, M. E., Neumann-Lara, V., & Pizaña, M. A. (2004). Dismantlings and iterated clique graphs. Discrete Mathematics, 282, 263–265.
101. 101.
Gallai, T. (1967). Transitiv orientierbare graphen. Acta Mathematica Hungarica, 18, 25–66.
102. 102.
Ganter, B. (2013). Diskrete mathematik: Geordnete mengen. Berlin/Heidelberg: Springer.
103. 103.
Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of NP-completeness. San Francisco: Freeman.
104. 104.
Gaschnig, J. (1978). Experimental case studies of backtrack vs. (Waltz)-type vs. new algorithms for satisfying assignment problems. In Proceedings of the Second Canadian Conference on Artificial Intelligence, Toronto (pp. 268–277).Google Scholar
105. 105.
Ghouilà-Houri, A. (1962). Caractérisation des graphes nonorientés dont on peut orienter les arêtes de manière à obtenir le graphe d’une relation d’ordre. Comptes Rendus de l’Académie des Sciences Paris, 254, 1370–1371.
106. 106.
Gibson, P., & Zaguia, I. (1998). Endomorphism classes of ordered sets, graphs and lattices. Order, 15, 21–34.
107. 107.
Gikas, M. (1986). Fixed points and structural problems in ordered sets. Ph.D. dissertation, Emory University.Google Scholar
108. 108.
Gilmore, P., & Hoffman, J. (1963). A characterization of comparability graphs and of interval graphs. Canadian Journal of Mathematics, 16, 539–548.
109. 109.
Golumbic, M. (1980). Algorithmic graph theory and perfect graphs. New York: Academic.
110. 110.
Gottlob, G. (2012). On minimal constraint networks. Artificial Intelligence, 191/192, 42–60.Google Scholar
111. 111.
Grant, K., Nowakowski, R., & Rival, I. (1995). The endomorphism spectrum of an ordered set. Order, 12, 45–55.
112. 112.
Grätzer, G. (1978). General lattice theory. Basel: Birkhäuser.
113. 113.
Gurevich, Y., & Shelah, S. (1987). Expected computation time for Hamiltonian path problem. SIAM Journal on Computing, 16(3), 486–502.
114. 114.
Gysin, R. (1977). Dimension transitiv orientierbarer Graphen. Acta Mathematica Academiae Scientiarum Hungaricae, 29, 313–316.
115. 115.
Habib, M., Morvan, M., Pouzet, M., & Rampon, J.-X. (1993). Interval dimension and MacNeille completion. Order, 10, 147–151.
116. 116.
Habib, M., Morvan, M., & Rampon, J.-X. (1993). On the calculation of transitive reduction-closure of orders. Discrete Mathematics, 111, 289–303.
117. 117.
Halmos, P. R. (1974). Naive set theory. Undergraduate texts in mathematics. New York: Springer.
118. 118.
Han, C.-C., & Lee, C.-H. (1988). Comments on Mohr and Henderson’s path consistency algorithm. Artificial Intelligence, 36, 125–130.
119. 119.
Haralick, R. M., & Elliott, G. L. (1980). Increasing tree search efficiency for constraint satisfaction problems. Artificial Intelligence, 14, 263–313.
120. 120.
Harzheim, E. (2005). Ordered sets. New York: Springer.
121. 121.
Hashimoto, J. (1948). On the product decomposition of partially ordered sets. Mathematica Japonica, 1, 120–123.
122. 122.
Hashimoto, J. (1951). On direct product decomposition of partially ordered sets. Annals of Mathematics, 54(2), 315–318.
123. 123.
Hashimoto, J., & Nakayama, T. (1950). On a problem of G. Birkhoff. Proceedings of the American Mathematical Society, 1, 141–142.Google Scholar
124. 124.
Hatcher, A. (2002). Algebraic topology. Cambridge: Cambridge University Press. Available at http://www.math.cornell.edu/~hatcher/AT/ATpage.html
125. 125.
Hazan, S. (1992). The Projection Property for Orders and Triangle-Free Graphs. Ph.D. dissertation, Vanderbilt University.Google Scholar
126. 126.
Hazan, S. (1996). On triangle-free projective graphs. Algebra Universalis, 35(2), 185–196.
127. 127.
Hazan, S., & Neumann-Lara, V. (1995). Fixed points of posets and clique graphs. Order, 13, 219–225.
128. 128.
Hazan, S., & Neumann-Lara, V. (1998). Two order invariants related to the fixed point property. Order, 15, 97–111.
129. 129.
Heikkilä, S. (1990). On fixed points through a generalized iteration method with applications to differential and integral equations involving discontinuities. Nonlinear Analysis, 14, 413–426.
130. 130.
Heikkilä, S. (1990). On differential equations in ordered Banach spaces with applications to differential systems and random equations. Differential Integral Equations, 3, 589–600.
131. 131.
Heikkilä, S., & Lakhshmikantham, V. (1994). Monotone iterative techniques for discontinuous nonlinear differential equations. New York: Marcel Dekker.Google Scholar
132. 132.
Heikkilä, S., & Lakhshmikantham, V. (1995). On mild solutions of first order discontinuous semilinear differential equations in Banach spaces. Applicable Analysis, 56, 131–146.
133. 133.
Heikkilä, S., Lakhshmikantham, V., & Sun, Y. (1992). Fixed point results in ordered normed spaces with applications to abstract and differential equations. Journal of Mathematical Analysis and Applications, 163, 422–437.
134. 134.
Heitzig, J., & Reinhold, J. (2000). The number of unlabeled orders on fourteen elements. Order, 17, 333–341.
135. 135.
Hell, P., & Nešetril, J. (2004). Graphs and homomorphisms. Oxford lecture series in mathematics and its applications (Vol. 28). Oxford: Oxford University Press.
136. 136.
Heuser, H. (1983). Lehrbuch der analysis, Teil 2. Stuttgart: B. G. Teubner.
137. 137.
Hewitt, E., & Stromberg, K. R. (1965). Real and abstract analysis. Springer graduate texts in mathematics (Vol. 25). Berlin/Heidelberg: Springer.Google Scholar
138. 138.
Hiraguchi, T. (1955). On the dimension of orders. Science Reports of Kanazawa University, 4, 1–20.
139. 139.
Höft, H., & Höft, M. (1976). Some fixed point theorems for partially ordered sets. Canadian Journal of Mathematics, 28, 992–997.
140. 140.
Höft, H., & Höft, M. (1988). Fixed point invariant reductions and a characterization theorem for lexicographic sums. Houston Journal of Mathematics, 14(3), 411–422.
141. 141.
Höft, H., & Höft, M. (1991). Fixed point free components in lexicographic sums with the fixed point property. Demonstratio Mathematica, XXIV, 294–304.Google Scholar
142. 142.
Hogg, T., Huberman, B., & Williams, C. (1996). Phase transitions and the search problem. Artificial Intelligence, 81, 1–15.
143. 143.
Hopcroft, J., & Karp, R. (1973). A $$n^{\frac{5} {2} }$$ algorithm for maximum matching in bipartite graphs. SIAM Journal on Computing, 2, 225–231.
144. 144.
Hughes, J. (2004). The Computation and Comparison of Decks of Small Ordered Sets. MS thesis, Louisiana Tech University.Google Scholar
145. 145.
Ille, P. (1993). Recognition problem in reconstruction for decomposable relations. In N. W. Sauer et al. (Eds.), Finite and infinite combinatorics in sets and logic (pp. 189–198). Dordrecht: Kluwer Academic.
146. 146.
Ille, P., & Rampon, J.-X. (1997). Reconstruction of posets with the same comparability graph. Journal of Combinatorial Theory (B), 74, 368–377.
147. 147.
Jachymski, J. (2007). The contraction principle for mappings on a metric space with a graph. Proceedings of the American Mathematical Society, 136, 1359–1373.Google Scholar
148. 148.
Jawhari, E., Misane, D., & Pouzet, M. (1986). Retracts: Graphs and ordered sets from the metric point of view. In I. Rival (Ed.), Combinatorics and ordered sets. Contemporary mathematics (Vol. 57, pp. 175–226). Providence: American Mathematical Society.Google Scholar
149. 149.
Jeavons, P., Cohen, D., & Pearson, J. (1998). Constraints and universal algebra. Annals of Mathematics and Artificial Intelligence, 24, 51–67.
150. 150.
Jónsson, B. (1982). Arithmetic of ordered sets. In I. Rival (Ed.), Ordered sets (pp. 3–41). Dordrecht: D. Reidel.
151. 151.
Jónsson, B., & McKenzie, R. (1982). Powers of partially ordered sets: Cancellation and refinement properties. Mathematica Scandinavica, 51, 87–120.
152. 152.
Kahn, J., & Saks, M. (1984). Balancing poset extensions. Order, 1, 113–126.
153. 153.
Kelly, D. (1984). Unsolved problems: Removable pairs in dimension theory. Order, 1, 217–218.
154. 154.
Kelly, D. (1985). Comparability graphs. In I. Rival (Ed.), Graphs and order (pp. 3–40). Dordrecht: D. Reidel.
155. 155.
Kelly, D., & Trotter, W. T. (1982). Dimension theory for ordered sets. In I. Rival (Ed.), Ordered sets (pp. 171–211). Dordrecht: D. Reidel.
156. 156.
Kelly, P. J. (1957). A congruence theorem for trees. Pacific Journal of Mathematics, 7, 961–968.
157. 157.
Kierstead, H., & Trotter, W. T. (1991). A note on removable pairs. In Y. Alavi et al. (Eds.), Graph theory, combinatorics and applications (Vol. 2, pp. 739–742). New York: Wiley.Google Scholar
158. 158.
Kimble, R. (1973). Extremal Problems in Dimension Theory for Partially Ordered Sets. Ph. D. dissertation, MIT.Google Scholar
159. 159.
Kinoshita, S. (1953). On some contractible continua without fixed point property. Fundamenta Mathematicae, 40, 96–98.
160. 160.
Kisielewicz, A. (1988). A solution of Dedekind’s problem on the number of isotone Boolean functions. Journal für die Reine und Angewandte Mathematik, 386, 139–144.
161. 161.
Kislitsin, S. S. (1968). Finite partially ordered sets and their associated sets of permutations. Matematicheskiye Zametki, 4, 511–518.Google Scholar
162. 162.
Klarner, D. (1969). The number of graded partially ordered sets. Journal of Combinatorial Theory, 6, 12–19.
163. 163.
Klarner, D. (1970). The number of classes of isomorphic graded partially ordered sets. Journal of Combinatorial Theory, 9, 412–419.
164. 164.
Kleitman, D. J., & Markowsky, G. (1975). On Dedekind’s problem: The number of isotone Boolean functions II. Transactions of the American Mathematical Society, 213, 373–390.
165. 165.
Kleitman, D. J., & Rothschild, B. L. (1970). The number of finite topologies. Proceedings of the American Mathematical Society, 25, 276–282.Google Scholar
166. 166.
Kleitman, D. J., & Rothschild, B. L. (1975). Asymptotic enumeration of partial orders on a finite set. Transactions of the American Mathematical Society, 205, 205–220.
167. 167.
Knaster, B. (1928). Un théorème sur les fonctions d’ensembles. Annales de la Société Polonaise de Mathématique., 6, 133–134.
168. 168.
Knuth, D. E. (1975). Estimating the efficiency of backtrack programs. Mathematics of Computation, 29, 121–136.
169. 169.
Köbler, J., Schöning, U., & Torán, J. (1993). The graph isomorphism problem: Its structural complexity. Progress in theoretical computer science. Boston: Birkhäuser.
170. 170.
Kondrak, G., & van Beek, P. (1997). A theoretical evaluation of selected backtracking algorithms. Artificial Intelligence, 89, 365–387.
171. 171.
Korshunov, A. (1977). On the number of monotone Boolean functions (in Russian). Problemy Kibernetiki, 38, 5–108.
172. 172.
Kozlov, D. (2008). Combinatorial algebraic topology. New York: Springer.
173. 173.
Kratsch, D., & Rampon, J.-X. (1994). A counterexample about poset reconstruction. Order, 11, 95–96.
174. 174.
Kratsch, D., & Rampon, J.-X. (1994). Towards the reconstruction of posets. Order, 11, 317–341.
175. 175.
Kratsch, D., & Rampon, J.-X. (1996). Width two posets are reconstructible. Discrete Mathematics, 162, 305–310.
176. 176.
Kukieła, M., & Schröder, B. (2012). A 2-antichain that is not contained in any finite retract. Algebra Universalis, 67, 59–62.
177. 177.
Kumar, V. (1992). Algorithms for constraint satisfaction problems – A survey. AI magazine, 13, 32–44.Google Scholar
178. 178.
Kung, J. P. S. (1999). Möbius inversion. Encyclopedia of Mathematics. Available at https://www.encyclopediaofmath.org/index.php/M%C3%B6bius_inversion
179. 179.
Langley, L. J. (1995). A recognition algorithm for orders of interval dimension 2, ARIDAM VI and VII (New Brunswick, NJ, 1991/1992). Discrete Applied Mathematics, 60, 257–266.
180. 180.
Larose, B. (1995). Minimal automorphic posets and the projection property. International Journal of Algebra and Computation, 5, 65–80.
181. 181.
Larrión, F., Neumann-Lara, V., & Pizaña, M. (2004). Clique divergent clockwork graphs and partial orders. Discrete Applied Mathematics, 141, 195–207.
182. 182.
Larrión, F., Pizaña, M., & Villaroel-Flores, R. (2008). Contractibility and the clique graph operator. Discrete Mathematics, 308, 3461–3469.
183. 183.
Li, B. (1990). All retraction operators on a lattice need not form a lattice. Journal of Pure and Applied Algebra, 67, 201–208.
184. 184.
Li, B. (1993). The core of a chain complete poset with no one-way infinite fence and no tower. Order, 10, 349–361.
185. 185.
Li, B. (1996). The ANTI-order for caccc posets – Part I. Discrete Mathematics, 158, 173–184.
186. 186.
Li, B. (1996). The ANTI-order for caccc posets – Part II. Discrete Mathematics, 158, 185–199.
187. 187.
Li, B., & Milner, E. C. (1992). The PT order and the fixed point property. Order, 9, 321–331.
188. 188.
Li, B., & Milner, E. C. (1993). A chain complete poset with no infinite antichain has a finite core. Order, 10, 55–63.
189. 189.
Li, B., & Milner, E. C. (1997). The ANTI-order and the fixed point property for caccc posets. Discrete Mathematics, 175, 197–209.
190. 190.
Li, B., & Milner, E. C. (1997). Isomorphic ANTI-cores of caccc posets. Discrete Mathematics, 176, 185–195.
191. 191.
Lindenstrauss, J., & Tzafriri, L. (1973). Classical Banach spaces. Springer lecture notes in mathematics (Vol. 338). New York: Springer
192. 192.
Liu, W.-P., & Wan, H. (1993). Automorphisms and isotone self-maps of ordered sets with top and bottom. Order, 10, 105–110.
193. 193.
Lonc, Z., & Rival, I. (1987). Chains, antichains and fibres. Journal of Combinatorial Theory, Series A, 44, 207–228.
194. 194.
Lovász, L. (1967). Operations with structures. Acta Mathematica Hungarica, 18, 321–328.
195. 195.
Lovász, L. (1971). On the cancellation law among finite relational structures. Periodica Mathematica Hungarica, 1, 145–156.
196. 196.
Lubiw, A. (1981). Some NP-complete problems similar to graph isomorphisms. SIAM Journal of Computing, 10, 11–21.
197. 197.
Luks, E. M. (1982). Isomorphism of graphs of bounded valence can be tested in polynomial time. Journal of Computer and System Science, 25, 42–65.
198. 198.
Mackworth, A. K. (1992). Constraint satisfaction. In S. Shapiro (Ed.), Encyclopedia of artificial intelligence (pp. 284–293). New York: Wiley.Google Scholar
199. 199.
Maltby, R. (1992). A smallest-fibre-size to poset-size ratio approaching $$\frac{8} {15}$$. Journal of Combinatorial Theory (A), 61, 328–330.
200. 200.
Maróti, M., & Zádori, L. (2012). Reflexive digraphs with near unanimity polymorphisms. Discrete Mathematics, 312, 2316–2328.
201. 201.
McGregor, J. J. (1979). Relational consistency algorithms and their application in finding subgraph and graph isomorphisms. Information Sciences, 19, 229–250.
202. 202.
McKay, B. (1997). Small graphs are reconstructible. The Australasian Journal of Combinatorics, 15, 123–126.
203. 203.
McKay, B. D., & Piperno, A. (2013). Practical graph isomorphism, II. Journal of Symbolic Computation, 60, 94–112.
204. 204.
McKee, T., & Prisner, E. (1996). An approach to graph-theoretic homology. In Y. Alavi et al. (Eds.), Combinatorics, graph theory, and algorithms. Proceedings of the Eighth Quadrennial International Conference in Graph Theory, Combinatorics, Algorithms and Applications (Vol. II, pp. 631–640).Google Scholar
205. 205.
McKenzie, R. (1999). Arithmetic of finite ordered sets: Cancellation of exponents I. Order, 16, 313–333.
206. 206.
McKenzie, R. (2000). Arithmetic of finite ordered sets: Cancellation of exponents II. Order, 17, 309–332.
207. 207.
Milner, E. C. (1990). Dilworth’s decomposition theorem in the infinite case. In K. P. Bogart, R. Freese, & J. P. S. Kung (Eds.), The Dilworth theorems: Selected papers of Robert P. Dilworth (pp. 30–35). Boston: Birkhäuser.
208. 208.
Mitas, J. (1992). The Structure of Interval Orders. Doctoral dissertation, TH Darmstadt.
209. 209.
Mitas, J. (1995). Interval orders based on arbitrary ordered sets. Discrete Mathematics, 144, 75–95.
210. 210.
Mohr, R., & Henderson, T. C. (1986). Arc and path consistency revisited. Artificial Intelligence, 28, 225–233.
211. 211.
Müller, H., & Rampon, J.-X. (1997). Partial orders and their convex subsets. Discrete Mathematics, 165/166, 507–517.Google Scholar
212. 212.
Nadel, B. (1989). Constraint satisfaction algorithms. Computational Intelligence, 5, 188–224.
213. 213.
Nešetřil, J., & Rödl, V. (1977). Partitions of finite relational and set systems. Journal of Combinatorial Theory (A), 17, 289–312.
214. 214.
Nešetřil, J., & Rödl, V. (1984). Combinatorial partitions of finite posets and lattices. Algebra Universalis, 19, 106–119.
215. 215.
Nešetřil, J., & Rödl, V. (1987). Complexity of diagrams. Order, 3, 321–330.
216. 216.
Niederle, J. (2008). Forbidden retracts for finite ordered sets of width at most four. Discrete Mathematics, 308, 1774–1784.
217. 217.
Nowakowski, R. (1981). Open question on p. 842 of [246].Google Scholar
218. 218.
Nowakowski, R., & Rival, I. (1979). A fixed edge theorem for graphs with loops. Journal of Graph Theory, 3, 339–350.
219. 219.
Pelczar, A. (1961). On the invariant points of a transformation. Annales Polonici Mathematici, XI, 199–202.Google Scholar
220. 220.
Peles, M. A. (1963). On Dilworth’s theorem in the infinite case. Israel Journal of Mathematics, 1, 108–109.
221. 221.
Pickering, D., & Roddy, M. (1992). On the strong fixed point property. Order, 9, 305–310.
222. 222.
Polat, N. (1995). Retract-collapsible graphs and invariant subgraph properties. Journal of Graph Theory, 19, 25–44.
223. 223.
Poston, T. (1971). Fuzzy Geometry. Ph.D. thesis, University of Warwick.Google Scholar
224. 224.
Pouzet, M. (1979). Relations non reconstructible par leurs restrictions. Journal of Combinatorial Theory (B), 26, 22–34.
225. 225.
Pretorius, L., & Swanepoel, C. (2000). Partitions of countable posets, papers in honour of Ernest J. Cockayne. Journal of Combinatorial Mathematics and Combinatorial Computing, 33, 289–297.
226. 226.
Priestley, H. A., & Ward, M. P. (1994). A multipurpose backtracking algorithm. Journal of Symbolic Computation, 18, 1–40.
227. 227.
Prisner, E. (1992). Convergence of iterated clique graphs. Discrete Mathematics, 103, 199–207.
228. 228.
Prömel, H. J. (1987). Counting unlabeled structures. Journal of Combinatorial Theory, Series A, 44, 83–93.
229. 229.
Prosser, P. (1993). Hybrid algorithms for the constraint satisfaction problem. Computational Intelligence, 9, 268–299.
230. 230.
Provan, J. S., & Ball, M. O. (1983). The complexity of counting cuts and of computing the probability that a graph is connected. SIAM Journal on Computing, 12, 777–788.
231. 231.
Purdom, P. W. (1978). Tree size by partial backtracking. SIAM Journal on Computing, 7, 481–491.
232. 232.
Quackenbush, R. (1986). Unsolved problems: Dedekind’s problem. Order, 2, 415–417.
233. 233.
Quilliot, A. (1983). Homomorphismes, points fixes, rétractions et jeux de poursuite dans les graphes, les ensembles ordonnés et les espaces métriques. Thèse de doctorat d’état, Univ. Paris VI.Google Scholar
234. 234.
Quilliot, A. (1983). An application of the Helly property to the partially ordered sets. Journal of Combinatorial Theory (A), 35, 185–198.
235. 235.
Quilliot, A. (1985). On the Helly property working as a compactness criterion for graphs. Journal of Combinatorial Theory (A), 40, 186–193.
236. 236.
Rabinovitch, I. (1978). The dimension of semiorders, Journal of Combinatorial Theory (Series A), 25, 50–61.
237. 237.
Rabinovitch, I. (1978). An upper bound on the dimension of interval orders. Journal of Combinatorial Theory (Series A), 25, 68–71.
238. 238.
Rabinovitch, I., & Rival, I. (1979). The rank of a distributive lattice. Discrete Mathematics, 25, 275–279.
239. 239.
Ramachandran, S. (1981). On a new digraph reconstruction conjecture. Journal of Combinatorial Theory Series B, 31, 143–149.
240. 240.
Rampon, J.-X. (2005). What is reconstruction for ordered sets? Discrete Mathematics, 291, 191–233.
241. 241.
Ramsey, F. P. (1930). On a problem of formal logic. Proceedings of the London Mathematical Society, 30(2), 264–286.
242. 242.
Reiner, V., & Welker, V. (1999). A homological lower bound for order dimension of lattices. Order, 16, 165–170.
243. 243.
Reuter, K. (1989). Removing critical Pairs. Order, 6, 107–118.
244. 244.
Rival, I. (1976). A fixed point theorem for finite partially ordered sets. Journal of Combinatorial Theory (A), 21, 309–318.
245. 245.
Rival, I. (1982). The retract construction. In I. Rival (Ed.), Ordered sets (pp. 97–122). Dordrecht: Dordrecht-Reidel.
246. 246.
Rival, I. (Ed.). (1982). Ordered sets. Boston: Dordrecht-Reidel
247. 247.
Rival, I. (Ed.). (1984). Graphs and order. Boston: Dordrecht-Reidel.Google Scholar
248. 248.
Rival, I. (1984). The diagram. In I. Rival (Ed.), Graphs and order (pp. 103–136). Dordrecht: Dordrecht-Reidel.Google Scholar
249. 249.
Rival, I. (1985). Unsolved problems: The diagram. Order, 2, 101–104.
250. 250.
Rival, I. (1985). Unsolved problems: The fixed point property. Order, 2, 219–221.
251. 251.
Rival, I. (Ed.). (1986). Combinatorics and ordered sets. In Proceedings of the AMS-IMS-SIAM Summer Research Conference at Humboldt State University, Contemporary Mathematics (Vol. 57). Providence: American Mathematical Society.Google Scholar
252. 252.
Rival, I. (Ed.). (1989). Algorithms and order. Dordrecht/Boston: Kluwer.
253. 253.
Rival, I., & Rutkowski, A. (1991). Does almost every isotone self-map have a fixed point? In Extremal problems for finite sets. Bolyai mathematical society studies (Vol. 3, pp. 413–422). Hungary: Viségrad.Google Scholar
254. 254.
Rival, I., & Zaguia, N. (Eds.). (1999). ORDAL ‘96, Papers from the Conference on Orders Algorithms and Applications, Ottawa, 1996. Theoretical computer science (Vol. 217). Amsterdam: Elsevier Science Publishers.Google Scholar
255. 255.
Roddy, M. (1994). Fixed points and products. Order, 11, 11–14.
256. 256.
Roddy, M. (2002). Fixed points and products: Width 3. Order, 19, 319–326.
257. 257.
Roddy, M. (2002). On an example of Rutkowski and Schröder. Order, 19, 365–366.
258. 258.
Roddy, M., & Schröder, B. (2005). Isotone relations revisited. Discrete Mathematics, 290, 229–248.
259. 259.
Rödl, V., & Thoma, L. (1995). The complexity of cover graph recognition for some varieties of finite lattices. Order, 12, 351–374.
260. 260.
Rossi, F., van Beek, P., & Walsh, T. (2006). Handbook of constraint programming. Amsterdam: Elsevier.
261. 261.
Rota, G.-C. (1964). On the foundations of combinatorial theory I: Theory of Möbius functions. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 2, 340–368.
262. 262.
Rutkowski, A. (1986). Cores, cutsets and the fixed point property. Order, 3, 257–267.
263. 263.
Rutkowski, A. (1986). The fixed point property for sums of posets. Demonstratio Mathematica, 4, 1077–1088.
264. 264.
Rutkowski, A. (1989). The fixed point property for small sets. Order, 6, 1–14.
265. 265.
Rutkowski, A., private communication.Google Scholar
266. 266.
Rutkowski, A., & Schröder, B. (1994). Retractability and the fixed point property for products. Order, 11, 353–359.
267. 267.
Sabin, D., & Freuder, E. C. (1994). Contradicting conventional wisdom in constraint satisfaction. In Proceedings of the 11th European Conference on Artificial Intelligence, Amsterdam (pp. 125–129).Google Scholar
268. 268.
Saks, M. (1985). Unsolved problems: Balancing linear extensions of ordered sets. Order, 2, 327–330.
269. 269.
Sands, B. (1985). Unsolved problems. Order, 1, 311–313.
270. 270.
Schröder, B. (1993). Fixed point property for 11-element sets. Order, 10, 329–347.
271. 271.
Schröder, B. (1995). On retractable sets and the fixed point property. Algebra Universalis, 33, 149–158.
272. 272.
Schröder, B. (1996). Fixed cliques and generalizations of dismantlability. In Y. Alavi et al. (Eds.), Combinatorics, graph theory, and algorithms. Proceedings of the Eighth Quadrennial International Conference in Graph Theory, Combinatorics, Algorithms and Applications (Vol. II, pp. 747–756).Google Scholar
273. 273.
Schröder, B. (1998). On cc-comparability invariance of the fixed point property. Discrete Mathematics, 179, 167–183.
274. 274.
Schröder, B. (2000). The uniqueness of cores for chain-complete ordered sets. Order, 17, 207–214.
275. 275.
Schröder, B. (2000). Reconstruction of the neighborhood deck of ordered sets. Order, 17, 255–269.
276. 276.
Schröder, B. (2001). Reconstruction of N-free ordered sets. Order, 18, 61–68.
277. 277.
Schröder, B. (2002). Examples on ordered set reconstruction. Order, 19, 283–294.
278. 278.
Schröder, B. (2003). On ordered sets with isomorphic marked maximal cards. Order, 20, 299–327.
279. 279.
Schröder, B. (2004). More examples on ordered set reconstruction. Discrete Mathematics, 280, 149–163.
280. 280.
Schröder, B. (2005). The automorphism conjecture for small sets and series parallel sets. Order, 22, 371–387.
281. 281.
Schröder, B. (2006). Examples of powers of ordered sets with the fixed point property. Order, 23, 211–219.
282. 282.
Schröder, B. (2007). Mathematical analysis – A concise introduction. Hoboken: Wiley.
283. 283.
Schröder, B. (2010). Fundamentals of mathematics – An introduction to proofs, logic, sets and numbers. Hoboken: Wiley.
284. 284.
Schröder, B. (2010). Pseudo-similar points in ordered sets. Discrete Mathematics, 310, 2815–2823.
285. 285.
Schröder, B. (2012). The fixed point property for ordered sets. Arabian Journal of Mathematics, 1, 529–547.
286. 286.
Schröder, B. (2015). Homomorphic constraint satisfaction problem solver. http://www.math.usm.edu/schroeder/software.htm Google Scholar
287. 287.
Schröder, B. (2015). The fixed vertex property for graphs. Order, 32, 363–377.
288. 288.
Schröder, B. (2015). The fixed point property for ordered sets of interval dimension 2 (submitted to order).Google Scholar
289. 289.
Schröder, B. (2016). The use of retractions in the fixed point theory for ordered sets. In M. Alfuraidan, & Q. H. Ansari (Eds.), Fixed point theory and graph theory – Foundations and integrative approaches (pp. 365–417). Amsterdam: Elsevier. Chapter in the Proceedings of the Workshop on Fixed Point Theory and Applications, King Fahd University of Petroleum and Minerals, December 2014, Dhahran, Saudi Arabia.Google Scholar
290. 290.
Schröder, B. (2016). Applications of dismantlability in analysis (in preparation).Google Scholar
291. 291.
Scott, D., & Suppes, P. (1958). Foundational aspects of theories of measurement. Journal of Symbolic Logic, 23, 113–128.
292. 292.
Segev, Y. (1994). Some remarks on finite 1-acyclic and collapsible complexes. Journal of Combinatorial Theory, Series A, 65, 137–150.
293. 293.
Smith, B., & Dyer, M. (1996). Locating the phase transition in binary constraint satisfaction problems. Artificial Intelligence, 81, 155–181.
294. 294.
Smithson, R. E. (1971). Fixed points of order-preserving multifunctions. Proceedings of the American Mathematical Society, 28, 304–310.Google Scholar
295. 295.
Spanier, E. H. (1966). Algebraic topology. New York: Springer.
296. 296.
Spinrad, J. (1988). Subdivision and lattices. Order, 5, 143–147.
297. 297.
Stanley, R. P. (1979). Balanced Cohen-Macauley complexes. Transactions of the American Mathematical Society, 249, 139–157.
298. 298.
Stockmeyer, P. K. (1977). The falsity of the reconstruction conjecture for tournaments. Journal of Graph Theory, 1, 19–25. Erratum: Journal of Graph Theory, 62, 199–200 (2009).Google Scholar
299. 299.
Stockmeyer, P. K. (1981). A census of non-reconstructible digraphs. I: Six related families. Journal of Combinatorial Theory (B), 31, 232–239.
300. 300.
Stockmeyer, P. K. (1988). Tilting at windmills, or My quest for nonreconstructible graphs; 250th anniversary conference on graph theory (Fort Wayne, IN, 1986). Congressus Numerantium, 63, 188–200.
301. 301.
Stong, R. E. (1966). Finite topological spaces. Transactions of the American Mathematical Society, 123, 325–340.
302. 302.
Sysło, M. (1984). A graph theoretic approach to the jump-number problem. In I. Rival (Ed.), Graphs and order (pp. 185–215). Boston: Dordrecht-Reidel.Google Scholar
303. 303.
Szpilrajn, E. (1930). Sur l’extension de l’ordre partiel. Fundamenta Mathematicae, 16, 386–389.
304. 304.
Szymik, M. (2015). Homotopies and the universal fixed point. Order, 32, 301–311.
305. 305.
Tancer, M. (2010). d-Collapsibility is NP-complete for d ≥ 4. Chicago Journal of Theoretical Computer Science, 2010, 28 pp. Article 3Google Scholar
306. 306.
Tancer, M. (2012). Recognition of collapsible complexes is NP-complete. Available at http://arxiv.org/abs/1211.6254
307. 307.
Tarski, A. (1955). A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics, 5, 285–309.
308. 308.
Thakare, N., Pawar, M., & Waphare, B. (2002). A structure theorem for dismantlable lattices and enumeration. Periodica Mathematica Hungarica, 45, 147–160.
309. 309.
Trotter, W. T. (1975). Inequalities in dimension theory for posets. Proceedings of the American Mathematical Society, 47, 311–316.Google Scholar
310. 310.
Trotter, W. T. (1976). A forbidden subposet characterization of an order dimension inequality. Mathematical Systems Theory, 10, 91–96.
311. 311.
Trotter, W. T. (1992). Combinatorics and partially ordered sets: Dimension theory. Baltimore: Johns Hopkins University Press.
312. 312.
Trotter, W. T., Moore, J. I., & Sumner, D. P. (1976). The dimension of a comparability graph. Proceedings of the American Mathematical Society, 60, 35–38.Google Scholar
313. 313.
Tsang, E. (1993). Foundations of constraint satisfaction. New York: Academic. Out of print. Now available through Amazon books on demand, see http://www.bracil.net/edward/FCS.html Google Scholar
314. 314.
Tverberg, H. (1967). On Dilworth’s theorem for partially ordered sets. Journal of Combinatorial Theory, 3, 305–306.
315. 315.
van Beek, P., & Dechter, R. (1995). On the minimality of row-convex constraint networks. Journal of the ACM, 42, 543–561.
316. 316.
von Rimscha, M. (1983). Reconstructibility and perfect graphs. Discrete Mathematics, 47, 79–90.
317. 317.
Wagon, S. (1993). The Banach-Tarski paradox. Cambridge: Cambridge University Press.
318. 318.
Walker, J. W. (1984). Isotone relations and the fixed point property for posets. Discrete Mathematics, 48, 275–288.
319. 319.
West, D. (1985). Parameters of partial orders and graphs: Packing, covering and representation. In I. Rival (Ed.), Graphs and orders (pp. 267–350). Dordrecht: Dordrecht-Reidel.
320. 320.
West, D. (1996). Introduction to graph theory. Upper Saddle River: Prentice Hall.
321. 321.
Whitehead, J. H. C. (1939). Simplicial spaces, nuclei and m-groups. Proceedings of the London Mathematical Society, 45(2), 243–327.
322. 322.
Wiedemann, D. (1991). A computation of the eighth Dedekind number. Order, 8, 5–6.
323. 323.
Wild, M. (1992). Cover-preserving order embeddings into Boolean lattices. Order, 9, 209–232.
324. 324.
Wilf, H. S. (1994). Generating functionology. New York: Academic.Google Scholar
325. 325.
Willard, S. (1970). General topology. Reading: Addison-Wesley.
326. 326.
Williams, C., & Hogg, T. (1994). Exploiting the deep structure of constraint problems. Artificial Intelligence, 70, 73–117.
327. 327.
Williamson, S. (1992). Fixed Point Properties in Ordered Sets. Ph. D. dissertation, Emory University.Google Scholar
328. 328.
Xia, W. (1992). Fixed point property and formal concept analysis. Order, 9, 255–264.
329. 329.
Yannakakis, M. (1982). On the complexity of the partial order dimension problem. SIAM Journal of Algebra and Discrete Mathematics, 3, 351–358.
330. 330.
Zádori, L. (1992). Order varieties generated by finite posets. Order, 8, 341–348.
331. 331.
Zádori, L. (1998). Characterizing finite irreducible relational sets. Acta Scientiarum Mathematicarum (Szeged), 64, 455–462.