Skip to main content

Artificial Neural Network

  • Chapter
  • First Online:
Mapping Biological Systems to Network Systems

Abstract

Study of artificial neural network (ANN) is a branch of machine learning and data mining. They are a group of measurable learning models inspired by biological neural networks, i.e., brain. The system is utilized to gauge or estimate capacities that can rely upon a substantial number of inputs which are obscure. ANNs are for the most part introduced as frameworks of interconnected “neurons” which trade messages between one another. The associations have numeric weights that can be tuned in view of experience, making neural networks versatile to inputs and fit for learning. The chapter provides details on the ANN and how these frameworks have tackled numerous issues for computer engineers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, J. A. (1993). Neurocomputing (Vol. 2). Cambridge: MIT Press.

    Google Scholar 

  • Arellano, M., & Bond, S. (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. The Review of Economic Studies, 58(2), 277–297.

    Article  MATH  Google Scholar 

  • Berry, M. J., & Linoff, G. (1997). Data mining techniques: For marketing, sales, and customer support. New York: Wiley.

    Google Scholar 

  • Bors, A. (2015) Introduction to Radial Basis Function (RBF) Networks. https://www-users.cs.york.ac.uk/adrian/Papers/Others/OSEE01.pdf.

  • Buscema, M. (1998). Back propagation neural networks. Substance Use and Misuse, 33(2), 233–270.

    Article  Google Scholar 

  • Carpenter, G. A. & Grossberg, S. (2010). Adaptive resonance theory (pp. 22–35). Springer.

    Google Scholar 

  • Craven, M. W., & Shavlik, J. W. (1997). Using neural networks for data mining. Future generation computer systems, 13(2), 211–229.

    Article  Google Scholar 

  • DeSieno, D. (1988). Adding a conscience to competitive learning. In IEEE International Conference on Neural Networks, (pp. 117–124).

    Google Scholar 

  • Dony, R. D., & Haykin, S. (1995). Neural network approaches to image compression. Proceedings of the IEEE, 83(2), 288–303.

    Article  Google Scholar 

  • Duda, R. O., Hart, P. E., & Stork, D. G. (2012). Pattern classification. New York: Wiley.

    Google Scholar 

  • Fang, W. C., Sheu, B. J., Chen, O. T., & Choi, J. (1992). A VLSI neural processor for image data compression using self-organization networks. IEEE Transactions on Neural Networks, 3(3), 506–518.

    Article  Google Scholar 

  • Favata, F., & Walker, R. (1991). A study of the application of Kohonen-type neural networks to the travelling salesman problem. Biological Cybernetics, 64(6), 463–468.

    Article  MATH  Google Scholar 

  • Fritzke, B. (1994). Growing cell structures—a self-organizing network for unsupervised and supervised learning. Neural Networks, 7(9), 1441–1460.

    Article  Google Scholar 

  • Gallant, S. (1990). Perceptron-based learning algorithms. IEEE Transactions on Neural Networks, 1(2), 179–191.

    Article  MathSciNet  Google Scholar 

  • García-Pedrajas, N., Hervás-Martínez, C., & Ortiz-Boyer, D. (2005). Cooperative coevolution of artificial neural network ensembles for pattern classification. IEEE Transactions on Evolutionary Computation, 9(3), 271–302.

    Article  Google Scholar 

  • Han, J., Kamber, M., & Pei, J. (2011). Data mining: concepts and techniques: Concepts and techniques. New York: Elsevier.

    Google Scholar 

  • Haykin, S. & Network, N. (2004). A comprehensive foundation. Neural Networks, No. 2.

    Google Scholar 

  • Hebb, D. O. (2005). The organization of behavior: A neuropsychological theory. Psychology Press.

    Google Scholar 

  • Hill, T., Marquez, L., O’Connor, M., & Remus, W. (1994). Artificial neural network models for forecasting and decision making. International Journal of Forecasting, 10(1), 5–15.

    Article  Google Scholar 

  • Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504–507.

    Article  MathSciNet  MATH  Google Scholar 

  • Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, 79(8), 2554–2558.

    Article  MathSciNet  Google Scholar 

  • Jain, A. K., Mao, J. & Mohiuddin, K. M. (1996). Artificial neural networks: A tutorial. Computer (3), 31–44.

    Google Scholar 

  • Juang, B. H., & Katagiri, S. (1992). Discriminative learning for minimum error classification [pattern recognition]. IEEE Transactions on Signal Processing, 40(12), 3043–3054.

    Article  MATH  Google Scholar 

  • Kaski, S. (1997). Data exploration using self-organizing maps. Acta Polytechnica Scandinavica: Mathematics, Computing and Management in Engineering Series 82.

    Google Scholar 

  • Kawaguchi, K., (2000). Back-propagation learning algorithm. http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node22.html. Accessed on October 19, 2015.

  • Khan, J., Wei, J. S., Ringner, M., Saal, L. H., Ladanyi, M., Westermann, F., & Meltzer, P. S. (2001). Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine, 7(6), 673–679.

    Article  Google Scholar 

  • Kohonen, T. (1998). The self-organizing map. Neurocomputing, 21(1), 1–6.

    Article  MATH  Google Scholar 

  • Krishnamurthy, A. K., Ahalt, S. C., Melton, D. E., & Chen, P. (1990). Neural networks for vector quantization of speech and images. IEEE Journal on Selected Areas in Communications, 8(8), 1449–1457.

    Article  Google Scholar 

  • Laferriere, A. L. (2010). Hopfield network. http://perso.ens-lyon.fr/eric.thierry/Graphes2010/alice-julien-laferriere.pdf.

  • Looney, C. G. (1997). Pattern recognition using neural networks: theory and algorithms for engineers and scientists. Oxford: Oxford University Press Inc.

    Google Scholar 

  • Lowe, D., & Tipping, M. (1996). Feed-forward neural networks and topographic mappings for exploratory data analysis. Neural Computing and Applications, 4(2), 83–95.

    Article  Google Scholar 

  • Mao, J., & Jain, A. K. (1995). Artificial neural networks for feature extraction and multivariate data projection. IEEE Transactions on Neural Networks, 6(2), 296–317.

    Article  Google Scholar 

  • Martinetz, T., & Schulten, K. (1994). Topology representing networks. Neural Networks, 7(3), 507–522.

    Article  Google Scholar 

  • McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115–133.

    Article  MathSciNet  MATH  Google Scholar 

  • Mermillod, M., Bugaiska, A. & Bonin, P. (2013). The stability-plasticity dilemma: investigating the continuum from catastrophic forgetting to age-limited learning effects. Frontiers in Psychology, 4.

    Google Scholar 

  • Minsky, M. L., & Papert, S. A. (1987). Perceptrons—expanded edition: an introduction to computational geometry. Boston, MA: MIT Press.

    Google Scholar 

  • Nelson, M. M., & Illingworth, W. T. (1991). A practical guide to neural nets (Vol. 1). Reading, MA: Addison-Wesley.

    Google Scholar 

  • Pérez-Uribe, A. & Sanchez, E. (2008) Bio-inspired techniques and their application to precision agriculture. REDS Institute (http://reds.eivd.ch) University of Applied Sciences of Western-Switzerland—EIVD.

  • Rogova, G. (1994). Combining the results of several neural network classifiers. Neural Networks, 7(5), 777–781.

    Article  Google Scholar 

  • Rosenkrantz, D. J., Stearns, R. E., & Lewis, P. M, I. I. (1977). An analysis of several heuristics for the traveling salesman problem. SIAM Journal on Computing, 6(3), 563–581.

    Article  MathSciNet  MATH  Google Scholar 

  • Shin, Y. & Ghosh, J. (1991) The pi-sigma network: An efficient higher-order neural network for pattern classification and function approximation. In IJCNN-91-Seattle International Joint Conference on Neural Networks (Vol. 1, pp. 13–18).

    Google Scholar 

  • Sietsma, J., & Dow, R. J. (1991). Creating artificial neural networks that generalize. Neural Networks, 4(1), 67–79.

    Article  Google Scholar 

  • Specht, D. F. (1990). Probabilistic neural networks. Neural Networks, 3(1), 109–118.

    Article  Google Scholar 

  • Tamu, (2015). http://research.cs.tamu.edu/prism/lectures/pr/pr_l16.pdf. Accessed on October 25, 2015.

  • Theera-Umpon, N., & Dhompongsa, S. (2007). Morphological granulometric features of nucleus in automatic bone marrow white blood cell classification. IEEE Transactions on Information Technology in Biomedicine, 11(3), 353–359.

    Article  Google Scholar 

  • Vuckovic, A., Radivojevic, V., Chen, A. C., & Popovic, D. (2002). Automatic recognition of alertness and drowsiness from EEG by an artificial neural network. Medical Engineering & Physics, 24(5), 349–360.

    Article  Google Scholar 

  • Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., & Lang, K. J. (1989). Phoneme recognition using time-delay neural networks. IEEE Transactions on Acoustics, Speech and Signal Processing, 37(3), 328–339.

    Article  Google Scholar 

  • Wikipedia (2015). Artificial neural network. Accessed on September 23, 2015.

    Google Scholar 

  • Witten, I. H. & Frank, E. (2005) Data mining: Practical machine learning tools and techniques. Morgan Kaufmann.

    Google Scholar 

  • Zhang, G., Patuwo, B. E., & Hu, M. Y. (1998). Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting, 14(1), 35–62.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heena Rathore .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rathore, H. (2016). Artificial Neural Network. In: Mapping Biological Systems to Network Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-29782-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29782-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29780-4

  • Online ISBN: 978-3-319-29782-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics