Skip to main content

Rearrangements of Quinoxalin(on)es for the Synthesis of Benzimidazol(on)es

  • Chapter
  • First Online:
Quinoxalines
  • 843 Accesses

Abstract

Benzimidazole derivatives have provided a large number of biologically active compounds that have been intensively used in medicinal chemistry as drugs (Elzahabi in Eur J Med Chem 46:4025–4034, 2011). They are structural isosteres of naturally occurring nucleotides, which allow them to easily interact with the biopolymers of the living systems and different kinds of biological activity have been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Mohsen HT, Ragab FAF, Ramla MM, El Diwani HI (2010) Novel benzimidazole–pyrimidine conjugates as potent antitumor agents. Eur J Med Chem 45(6):2336–2344. doi:10.1016/j.ejmech.2010.02.011

    Article  CAS  Google Scholar 

  • Abramovitch RA, Cue BW (1973) Ring contraction of 2-azidoquinoline and quinoxaline-1-oxides. Heterocycles 1(3–4):227–231. doi:10.3987/R-1973-03-0227

    Article  CAS  Google Scholar 

  • Achour R, Essasi EM, Zniber R (1988) Nouvelle synthese de l′-(∝-methyl vinyl)-9-methyl-3s-triazolo[4,3-a]benzimidazole a partir de la methyl-4-benzodiazepine-1,5-one-2. Tetrahedron Lett 29(2):195–198. doi:10.1016/S0040-4039(00)80051-9

    Article  CAS  Google Scholar 

  • Ahmad Y, Habib M, Ziauddin S, Ziauddin S, Bakhtiari B (1966) Quinoxaline derivatives. IX.1a An unusual chlorine substitution in quinoxaline N-oxides. Its scope and limitations. J Org Chem 31(8):2613–2616. doi:10.1021/jo01346a036

    Article  CAS  Google Scholar 

  • Ahmad Y, Habib MS, Mohammady A, Bakhtiari B, Shamsi SA (1968) Quinoxaline derivatives. X. Novel rearrangement of certain quinoxaline N-oxides to 6-benzimidazolinones. J Org Chem 33(1):201–205. doi:10.1021/jo01265a038

    Article  CAS  Google Scholar 

  • Albert A, McCormack JJ (1965) 1280. Pteridine studies. Part XXX. Some Michael-type addition reactions of 7-hydroxypteridine. J Chem Soc 6930–6934. doi:10.1039/JR9650006930

  • Allu S, Selvakumar S, Singh VK (2010) Asymmetric organocatalytic Michael-type reaction of phosphorus ylides to nitroolefins: synthesis of γ-nitro-β-aryl-α-methylene carboxylic esters. Tetrahedron Lett 51(2):446–448. doi:10.1016/j.tetlet.2009.11.063

    Article  CAS  Google Scholar 

  • Alper S, Temiz O, Sener E, Yalcin I (2003) Some new bi- and ter-benzimidazole derivatives as topoisomerase inhibitors. Farmaco 58:497–507. doi:10.1016/S0014-827X(03)00042-9

    Article  CAS  Google Scholar 

  • Andrei O, Alexakis A, Bernardinelli G (2003) Asymmetric Michael addition of α-hydroxyketones to nitroolefins catalyzed by chiral diamine. Org Lett 5(14):2559–2561. doi:10.1021/ol0348755

    Article  CAS  Google Scholar 

  • Andrzejewska M, Yepez-Mulia L, Cedillo-Rivera R, Tapia A, Vilpo L, Vilpo J, Kazimierczuk Z (2002) Synthesis, antiprotozoal and anticancer activity of substituted 2-trifluoromethyl- and 2-pentafluoroethylbenzimidazoles. Eur J Med Chem 37(12):973–978. doi:10.1016/S0223-5234(02)01421-6

    Article  CAS  Google Scholar 

  • Ates-Alagoz Z, Buyukbingol E (2001) Synthesis of some novel tetrahydronaphthalene benzimidazole derivatives. Heterocyclic Commun 7(5):455–460

    Article  CAS  Google Scholar 

  • Ates-Alagoz Z, Eke BC, Suzen S, Buyukbingol E, Iscan M (1997) Effects of a benzimidazole compound on monooxygenase activities. Farmaco 52:703–708

    Google Scholar 

  • Ates-Alagoz Z, Eke BC, Coban T, Iscan M, Buyukbingol E (2004) Antioxidant properties of novel benzimidazole retinoids. Arch Pharm 337(4):188–192. doi:10.1002/ardp.200300834

    Article  CAS  Google Scholar 

  • Audrieth LA, Ogg BA (1951) The chemistry of hydrazines. Wiley, New York

    Google Scholar 

  • Ayaz M, Xu Z, Hulme C (2014) Novel succinct routes to quinoxalines and 2-benzimidazolylquinoxalines via the Ugi reaction. Tetrahedron Lett 55(23):3406–3409. doi:10.1016/j.tetlet.2014.04.013

    Article  CAS  Google Scholar 

  • Balasubramaniyan V, Balasubramaniyan P, Patil SV (1990) Reactions of cyclic anhydrides: Part XVII - synthesis of pyrrolobenzimidazoles and benzimidazolylacrylic acids. Indian J Chem B 29(2):124–127

    Google Scholar 

  • Bandini E, Corda G, D’Aurizio A, Panunzio M (2010) A straightforward synthesis of conhydrine by hetero Diels-Alder strategy mediated by microwaves. Tetrahedron Lett 51(6):933–934. doi:10.1016/j.tetlet.2009.12.039

    Article  CAS  Google Scholar 

  • Banfi L, Riva R, Basso A (2010) Coupling isocyanide-based multicomponent reactions with aliphatic or acyl nucleophilic substitution processes. Synlett 1:23–41. doi:10.1055/s-0029-1218527

    Article  CAS  Google Scholar 

  • Battershill AJ, Scott LJ (2006) Telmisartan: A review of its use in the management of hypertension. Drugs 66(1):51–83. doi:10.2165/00003495-200666010-00004

    Article  CAS  Google Scholar 

  • Beaulieu PL, Haché B, von Moos E (2003) A practical Oxone®-mediated, high-throughput, solution-phase synthesis of benzimidazoles from 1,2-phenylenediamines and aldehydes and its application to preparative scale synthesis. Synthesis 11:1683–1692. doi:10.1055/s-2003-40888

    Article  Google Scholar 

  • Behforouz M, Bolan JL, Flynt MS (1985) 2,4-Dinitrophenylhydrazones: a modified method for the preparation of these derivatives and an explanation of previous conflicting results. J Org Chem 50(8):1186–1189. doi:10.1021/jo00208a009

    Article  CAS  Google Scholar 

  • Bellamy LJ (1975) The infra-red spectra of complex molecules. Wiley, New York

    Book  Google Scholar 

  • Benndorf RA, Rudolph T, Appel D, Schwedhelm E, Maas R, Schulze F, Silberhorn E, Boger RH (2006) Telmisartan improves insulin sensitivity in nondiabetic patients with essential hypertension. Metab, Clin Exp 55(9):1159–1164. doi:10.1016/j.metabol.2006.04.013

    Article  CAS  Google Scholar 

  • Benson SC, Pershadsingh HA, Ho CI, Chittiboyina A, Desai P, Pravenec M, Qi N, Wang J, Avery MA, Kurtz TW (2004) Identification of Telmisartan as a unique Angiotensin II receptor antagonist with selective PPARγ-modulating activity. Hypertension 43(5):993–1002. doi:10.1161/01.HYP.0000123072.34629.57

    Article  CAS  Google Scholar 

  • Berry CR, Hsung RP (2004) Inverse electron-demand aza-[4+2] cycloaddition reactions of allenamides. Tetrahedron 60(35):7629–7636. doi:10.1016/j.tet.2004.05.117

    Article  CAS  Google Scholar 

  • Bettadaiah BK, Burudutt KN, Srinivas P (2003) Direct conversion of tert-β-bromo alcohols to ketones with zinc sulfide and DMSO. J Org Chem 68(6):2460–2462. doi:10.1021/jo020658q

    Article  CAS  Google Scholar 

  • Bian M, Yao W, Ding H et al (2010) Highly efficient access to iminoisocoumarins and α-iminopyrones via AgOTf-catalyzed intramolecular enyne-amide cyclization. J Org Chem 75(1):269–272. doi:10.1021/jo9023478

    Article  CAS  Google Scholar 

  • Boiani M, Gonzalez M (2005) Imidazole and benzimidazole derivatives as chemotherapeutic agents. Mini Rev Med Chem 5(4):409–424. doi:10.2174/1389557053544047

    Article  CAS  Google Scholar 

  • Boncel S, Mączka M, Walczak KZ (2010) Michael versus retro-Michael reaction in the regioselective synthesis of N-1 and N-3 uracil adducts. Tetrahedron 66(43):8450–8457. doi:10.1016/j.tet.2010.08.059

    Article  CAS  Google Scholar 

  • Bouaziz Z, Nebois P, Fillion H (1995) Additions of crotonaldehyde N, N-dimethylhydrazone to p-quinones under ultrasonic and thermal conditions. Tetrahedron 51(14):4057–4064. doi:10.1016/0040-4020(95)00146-Y

    Article  CAS  Google Scholar 

  • Boufatah N, Gellis A, Maldonado J, Vanelle P (2004) Efficient microwave-assisted synthesis of new sulfonylbenzimidazole-4,7-diones: heterocyclic quinones with potential antitumor activity. Tetrahedron 60(41):9131–9137. doi:10.1016/j.tet.2004.07.070

    Article  CAS  Google Scholar 

  • Brain CT, Brunton SA (2002) An intramolecular palladium-catalysed aryl amination reaction to produce benzimidazoles. Tetrahedron Lett 43(10):1893–1895. doi:10.1016/S0040-4039(02)00132-6

    Article  CAS  Google Scholar 

  • Brain CT, Steer JT (2003) An improved procedure for the synthesis of benzimidazoles, using palladium-catalyzed aryl-amination chemistry. J Org Chem 68(17):6814–6816. doi:10.1021/jo034824l

    Article  CAS  Google Scholar 

  • Branco PS, Prabhakar S, Lobo AM, Wiliiams DJ (1992) Reactions of hydroxylamines with ethyl cyanoformate. preparation of aminonitrones and their synthetic applications. Tetrahedron 48(30):6335–6360. doi:10.1016/S0040-4020(01)88224-7

    Article  CAS  Google Scholar 

  • Brown DJ (2004) Quinoxalines: supplement II. In: Taylor E, Wipf P (eds) The chemistry of heterocyclic compounds. A series of monographs, vol 61. Wiley, New Jersey

    Google Scholar 

  • Buckingham J (1969) The chemistry of arylhydrazones. Quart Rev Chem Soc 23(1):37–56. doi:10.1039/QR9692300037

    Article  CAS  Google Scholar 

  • Budow S, Kozlowska M, Gorska A, Kazimierczuk Z, Eickmeier H, La Colla P, Gosselin G, Seela F (2009) Substituted benzimidazoles: antiviral activity and synthesis of nucleosides (HL-3271DP). Arkivoc iii:225–250

    Google Scholar 

  • Burnier M, Brunner HR (2000) Angiotensin II receptor antagonists. Lancet 355(9204):637–645. doi:10.1016/S0140-6736(99)10365-9

    Article  CAS  Google Scholar 

  • Burrell RA, Cox JM, Savins EG (1973) Quinoxaline precursors of fungitoxic benzimidazolylcarbamates: syntheses and photochemically-induced transformations. J Chem Soc, Perkin I 2707–2713. doi:10.1039/P19730002707

  • Byun E, Hong B, De Castro KA, Lim M, Rhee H (2007) One-pot reductive mono-N-alkylation of aniline and nitroarene derivatives using aldehydes. J Org Chem 72(25):9815–9817. doi:10.1021/jo701503q

    Article  CAS  Google Scholar 

  • Cadogan JIG, Marshall R, Smith DM, Todd MJ (1970) Reduction of nitro- and nitroso-compounds by tervalent phosphorus reagents. Part VIII. Syntheses of benzimidazoles and anthranils. J Chem Soc C 18:2441–2443

    Article  Google Scholar 

  • Castro A, Giannin DD, Greenlee WF (1970) Synthesis of a 2,3′-bipyrrole. Denitrosation in the Knorr pyrrole synthesis. J Org Chem 35(8):2815–2816. doi:10.1021/jo00833a080

    Article  CAS  Google Scholar 

  • Cernes R, Mashavi M, Zimlichman R (2011) Differential clinical profile of candesartan compared to other angiotensin receptor blockers. Vasc Health Risk Manag 7(1):749–759. doi:10.2147/VHRM.S22591

    CAS  Google Scholar 

  • Chandrasekhar S, Sridhar M (2000) A bifunctional approach towards the mild oxidation of organic halides: 2-dimethylamino-N,N-dimethylaniline N-oxide. Tetrahedron Lett 41(28):5423–5425. doi:10.1016/S0040-4039(00)00874-1

    Article  CAS  Google Scholar 

  • Cheeseman GWH, Cookson RF (1979) In: Weissberger A, Taylor EC (eds) Condensed pyrazines, vol 35. Wiley, New York, p 835

    Google Scholar 

  • Cheeseman GWH, Rafig M (1971) Quinoxalines and related compounds. Part VIII. The reactions of quinoxaline-2(1H)-ones and-2,3(1H,4H)-dioneswith hydrazine. J Chem Soc C 452–454. doi:10.1039/J39710000452

  • Climent MJ, Corma A, Iborra S, Martínez-Silvestre S (2013) Gold catalysis opens up a new route for the synthesis of benzimidazoylquinoxaline derivatives from biomass-derived products (Glycerol). Chem Cat Chem 5(12):3866–3874. doi:10.1002/cctc.201300416

    CAS  Google Scholar 

  • Cuckler AC, Mezey KC (1966) The therapeutic efficacy of thiabendazole for helminthic infections in man: a literature review. Arzneim Forsch 16:411–428

    CAS  Google Scholar 

  • Cuellar MA, Alegria LK, Prieto YA, Cortes MJ, Tapia RA, Preite MD (2002) Hetero-Diels-Alder reaction of halogenated quinones with a polygodial-derived azadiene. Tetrahedron Lett 43(12):2127–2131. doi:10.1016/S0040-4039(02)00246-0

    Article  CAS  Google Scholar 

  • De Moliner F, Hulme C (2012) A Van Leusen deprotection-cyclization strategy as a fast entry into two imidazoquinoxaline families. Tetrahedron Lett 53(43):5787–5790. doi:10.1016/j.tetlet.2012.08.072

    Article  CAS  Google Scholar 

  • Denny WA, Rewcastle GW, Baguley BC (1990) Potential antitumor agents. 59. Structure-activity relationships for 2-phenylbenzimidazole-4-carboxamides, a new class of minimal DNA-intercalating agents which may not act via topoisomerase II. J Med Chem 33(2):814–821. doi:10.1021/jm00164a054

    Article  CAS  Google Scholar 

  • Dohle W, Staubitz A, Knochel P (2003) Mild synthesis of polyfunctional benzimidazoles and indoles by the reduction of functionalized nitroarenes with phenylmagnesium chloride. Chem Eur J 9(21):5323–5331. doi:10.1002/chem.200305090

    Article  CAS  Google Scholar 

  • Dömling A (2006) Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem Rev 106(1):17–89. doi:10.1021/cr0505728

    Article  CAS  Google Scholar 

  • El Kaim L, Grimaud L (2009) Beyond the Ugi reaction: less conventional interactions between isocyanides and iminium species. Tetrahedron 65(11):2153–2171. doi:10.1016/j.tet.2008.12.002

    Article  CAS  Google Scholar 

  • Elchaninov IM, Elchaninov MM (2014) The synthesis and some transformations of 2-(2-furyl)-1H-naphto-[2,3-d]-imidazole. Russ J Org Chem 50(8):1145–1149. doi:10.1134/S1070428014080120

    Article  CAS  Google Scholar 

  • Elderfield RC, Kreysa FJ (1948) The reaction of o-phenylenediamine and of 8-amino-1,2,3,4-tetrahydroquinoline derivatives with carbonyl compounds. J Am Chem Soc 70:44–48. doi:10.1021/ja01181a015

    Article  CAS  Google Scholar 

  • Eleftheriadis N, Neochoritis CG, Tsoleridis CA, Stephanidou-Stephanatou J, Iakovidou-Kritsi Z (2013) One-pot microwave assisted synthesis of new 2-alkoxycarbonylmethylene-4-oxo-1,5-benzo-, naphtho-, and pyridodiazepines and assessment of their cytogenetic activity. Eur J Med Chem 67:302–309. doi:10.1016/j.ejmech.2013.06.028

    Article  CAS  Google Scholar 

  • Elnima EI, Zubair MU, Al-Badr AA (1981) Antibacterial and antifungal activities of benzimidazole and benzoxazole derivatives. Antimicrob Agents Chemother 19(1):29–32. doi:10.1128/AAC.19.1.29

    Article  CAS  Google Scholar 

  • Elzahabi HSA (2011) Synthesis, characterization of some benzazoles bearing pyridine moiety: search for novel anticancer agents. Eur J Med Chem 46:4025–4034. doi:10.1016/j.ejmech.2011.05.075

    Article  CAS  Google Scholar 

  • Faust R, Weber Ch (1997) One-step synthesis of dialkynyl-1,2-diones and their conversion to fused pyrazines bearing enediyne units. Tetrahedron 53(43):14655–14670. doi:10.1016/S0040-4020(97)01007-7

    Article  CAS  Google Scholar 

  • Fryšová I, Trávníček Z, Slouka J, Cankař P (2011) Polycyclic heterocycles with acidic N-H groups IX1. The unexpected decomposition route of 2-(3-oxo-3,4-dihydroquinoxalin-2-yl)benzenediazosulfonates (11-5751IP). Arkivoc ii:127–136

    Google Scholar 

  • Galimullina VR (2015) Quinoxaline–benzimidazole rearrangement–a new and effective method of synthesis of a number of substituted and condensed benzimidazolylquinolines. Ph.D. dissertation, Arbuzov AE Institute of Organic and Physical Chemistry, Kazan Research Center of the Russian Academy of Sciences, Kazan, Russia, p 147

    Google Scholar 

  • Gao B, Zhou Q, Geng Y, Cheng Y, Ma D, Xi Z, Wang L, Wang F (2006) New fluorescent dipolar pyrazine derivatives for non-doped red organic light-emitting diodes. Mater Chem Phys 99(2–3):247–252. doi:10.1016/j.matchemphys.2005.10.020

    Article  CAS  Google Scholar 

  • Gibson MS, Green M (1965) The alkaline and acidic degradation of 3-amino-1,2,3-benzotriazin-4-one and related compounds. Tetrahedron 21(9):2191–2195. doi:10.1016/S0040-4020(01)93874-8

    Article  CAS  Google Scholar 

  • Goin CJ, Mayer VW (1995) Induction of chromosomes loss in Sacchromyces cerevisiae strain D61.M by selected benzimidazole compounds. Mut Res Gen Toxic 343(4):185–199. doi:10.1016/0165-1218(95)90014-4

    Google Scholar 

  • Gorbunova EA, Mamedov VA (2006) Oxidative dehydrobromination of 3-(α-bromobenzyl)quinoxalin-2(1H)-ones according to Kornblum as a simple and efficient synthetic route to quinoxalyl aryl ketones. Russ J Org Chem 42(10):1528–1531. doi:10.1134/S107042800610023X

    Article  CAS  Google Scholar 

  • Gouverneur V, Ghosez L (1996) Electrophilic amination of 2-azadienes. Tetrahedron 52(21):7585–7598. doi:10.1016/0040-4020(96)00268-2

    Article  CAS  Google Scholar 

  • Gray DN (1970) Hydrates of 2,2′-diphenyl-5,5′-bibenzimidazole. J Heterocycl Chem 7(4):947–949. doi:10.1002/jhet.5570070435

    Article  CAS  Google Scholar 

  • Grimmett MR (1997) Imidazole and benzimidazole synthesis. In: Meth-Cohn O, Katritzky AR (eds) Best synthetic methods. Academ Press, New York

    Google Scholar 

  • Gunawan S, Ayaz M, De Moliner F, Frett B, Kaiser C, Patrick N, Xu Z, Hulme C (2012) Synthesis of tetrazolo-fused benzodiazepines and benzodiazepinones by a two-step protocol using an Ugi-azide reaction for initial diversity generation. Tetrahedron 68(27–28):5606–5611. doi:10.1016/j.tet.2012.04.068

    Article  CAS  Google Scholar 

  • Gutsche CD (1967) The chemistry of carbonyl compounds. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Haass NK, Sproesser K, Nguyen TK, Contractor R, Medina A, Nathanson KL, Herlyn M, Smalley KSM (2008) The mitogen-activated protein/extracellular signal-regulated kinase kinase inhibitor AZD6244 (ARRY-142886) induces growth arrest in melanoma cells and tumor regression when combined with docetaxel. Clin Cancer Res 14(1):230–239. doi:10.1158/1078-0432.CCR-07-1440

    Article  CAS  Google Scholar 

  • Haddadin MJ, Issidorides CH (1967) Photolysis of a quinoxaline-di-N-oxide. Tetrahedron Lett 8(8):753–756. doi:10.1016/S0040-4039(00)90589-6

    Article  Google Scholar 

  • Hakan G, Tuncbilek M, Ayhan G, Altanlar N (1998) Synthesis of some new benzimidazolecarboxamides and evaluation of their antimicrobial activity. Farmaco 53(6):415–420. doi:10.1016/S0014-827X(98)00045-7

    Article  Google Scholar 

  • Ham GE (1964) Activated aziridines. I. Reaction of anilines with O-ethyl-N,N-ethyleneurethane. Mechanism and Hammett ρ-constant. J Org Chem 29(10):3052–3055. doi:10.1021/jo01033a064

    Article  CAS  Google Scholar 

  • Harada S, Kumagai N, Kinoshita T, Matsunaga S, Shibasaki M (2003) Direct catalytic asymmetric Michael reaction of hydroxyketones: asymmetric Zn catalysis with a Et2Zn/linked-BINOL complex. J Am Chem Soc 125(9):2582–2590. doi:10.1021/ja028928+

    Article  CAS  Google Scholar 

  • Hassner A, Namboothiri I (2012) Organic syntheses based on name reactions, 3rd edn. Elsevier, Amsterdam, pp 299–300

    Google Scholar 

  • Hayashi E, Iijima C (1962) Studies on quinoxaline N-oxides. I. On 2-phenylquinoxaline 4-oxide. Yakugaki Zasshi (J Pharm Soc Jpn) 82(8):1093–1102. [CA 58, 4551 (1963)]

    Google Scholar 

  • Hayashi E, Miura Y (1967) Studies on quinoxaline N-oxides. IX. On syntheses of 2-alkyl or 2-alkoxybenzimidazole 3-oxide from 2-alkyl or 2-alkoxyquinoxaline 4-oxide. Yakugaku Zasshi (J Pharm Soc Jpn) 87(6):648–650. [CA 67, 90775 s (1967)]

    Google Scholar 

  • Hickmott PW (1982a) Enamines: recent advances in synthetic, spectroscopic, mechanistic, and stereochemical aspects–I. Enamines: recent advances in synthetic, spectroscopic, mechanistic, and stereochemical aspects–I. Tetrahedron 38(14):1975–2050. doi:10.1016/0040-4020(82)85149-1

    Article  CAS  Google Scholar 

  • Hickmott PW (1982b) Enamines: recent advances in synthetic, spectroscopic, mechanistic, and stereochemical aspects–II. Tetrahedron 38(23):3363–3446. doi:10.1016/0040-4020(82)85027-8

    Article  CAS  Google Scholar 

  • Hickmott PW (1984) Recent advances in the chemistry of conjugated enamines. Tetrahedron 40(16):2989–3051. doi:10.1016/S0040-4020(01)82429-7

    Article  CAS  Google Scholar 

  • Hilt G, Treutwein J (2007) Cobalt-catalyzed Alder-ene reaction. Angew Chem Int Ed 46(44):8500–8502. doi:10.1002/anie.200703180

    Article  CAS  Google Scholar 

  • Hinsberg O (1884) Ueber chinoxaline. Ber 17(1):318–323. doi:10.1002/cber.18840170193

    Article  Google Scholar 

  • Hinsberg O (1887) Ueber chinoxalinbasen. Liebigs Ann Chem 237(3):368. doi:10.1002/jlac.18872370305

    Article  Google Scholar 

  • Hisano T, Ichikawa M, Tsumoto K, Tasaki M (1982) Synthesis of benzoxazoles, benzothiazoles and benzimidazoles and evaluation of their antifungal, insecticidal and herbicidal activities. Chem Pharm Bull 30(8):2996–3004

    Article  CAS  Google Scholar 

  • Hollinshead AC, Smith PK (1958) Effects of certain purines and related compounds on virus propagation. J Pharmacol Exp Ther 123:54–62

    CAS  Google Scholar 

  • Hölljes EL, Wagner EC (1944) Some reactions of nitriles as acid anammonides. J Org Chem 9(1):31–49. doi:10.1021/jo01183a005

    Article  Google Scholar 

  • Howard HR, Sarges R, Siegel TW, Beyer TA (1992) Synthesis and aldose reductase inhibitory activity of substituted 2(1H)-benzimidazolone- and oxindole-1-acetic acids. Eur J Med Chem 27(8):779–789. doi:10.1016/0223-5234(92)90112-E

    Article  CAS  Google Scholar 

  • Huang Y, Khoury K, Chanas T, Doemling A (2012) Multicomponent synthesis of diverse 1,4-benzodiazepine scaffolds. Org Lett 14(23):5916–5919. doi:10.1021/ol302837h

    Article  CAS  Google Scholar 

  • Hudkins RL (1995) Synthesis of 1H-indolyl-2-benzimidazoles and 1H-indolyl-2-benzothiazoles. Heterocycles 41(5):1045–1049. doi:10.3987/COM-95-7041

    Article  CAS  Google Scholar 

  • Hulme C, Gore V (2003) Multi-component reactions: emerging chemistry in drug discovery from Xylocain to Crixivan. Curr Med Chem 10(1):51–80. doi:10.2174/0929867033368600

    Article  CAS  Google Scholar 

  • Hulme C, Dietrich J (2009) Emerging molecular diversity from the intra-molecular Ugi reaction: iterative efficiency in medicinal chemistry. J Mol Divers 13(2):195–207. doi:10.1007/s11030-009-9111-6

    Article  CAS  Google Scholar 

  • Hulme C, Peng J, Louridas B, Menard P, Krolikowski P, Kumar NV (1998a) Applications of N-BOC-diamines for the solution phase synthesis of ketopiperazine libraries utilizing a Ugi/de-Boc/cyclization (UDC) strategy. Tetrahedron Lett 39(44):8047–8050. doi:10.1016/S0040-4039(98)01770-5

    Article  CAS  Google Scholar 

  • Hulme C, Peng J, Morton G, Salvino JM, Herpin T, Labaudiniere R (1998b) Novel safety-catch linker and its application with a Ugi/de-BOC/cyclization (UDC) strategy to access carboxylic acids, 1,4-benzodiazepines, diketopiperazines, ketopiperazines and dihydroquinoxalinones. Tetrahedron Lett 39(40):7227–7230. doi:10.1016/S0040-4039(98)01593-7

    Article  CAS  Google Scholar 

  • Hulme C, Peng J, Tang SY, Burns CJ, Morize I, Labaudiniere R (1998c) Improved procedure for the solution phase preparation of 1,4-benzodiazepine-2,5-dione libraries via Armstrong’s convertible isonitrile and the Ugi reaction. J Org Chem 63(22):8021–8023. doi:10.1021/jo980622r

    Article  CAS  Google Scholar 

  • Hulme C, Ma L, Romano JJ, Morrissette M (1999) Remarkable three-step-one-pot solution phase preparation of novel imidazolines utilizing a UDC (Ugi/de-Boc/cyclize) strategy. Tetrahedron Lett 40(45):7925–7928. doi:10.1016/S0040-4039(99)01580-4

    Article  CAS  Google Scholar 

  • Hulme C, Ma L, Romano JJ, Morton G, Tang S-Y, Cherrier M-P, Choi S, Salvino J, Labaudiniere R (2000a) Novel applications of carbon dioxide/MeOH for the synthesis of hydantoins and cyclic ureas via the Ugi reaction. Tetrahedron Lett 41(12):1889–1893. doi:10.1016/S0040-4039(00)00053-8

    Article  CAS  Google Scholar 

  • Hulme C, Ma L, Cherrier MP, Romano JJ, Morton G, Duquenne C, Salvino J, Labaudiniere R (2000b) Novel applications of convertible isonitriles for the synthesis of mono and bicyclic γ-lactams via a UDC strategy. Tetrahedron Lett 41(12):1883–1887. doi:10.1016/S0040-4039(00)00052-6

    Article  CAS  Google Scholar 

  • Ibrahim EA, Omar AME, Khalil MA (1980) Novel potential anticancer agents derived from benzimidazole. J Pharm Sci 69:1348–1350. doi:10.1002/jps.2600691130

    Article  CAS  Google Scholar 

  • Isaykina OG (2007) Quinoxalinomonopodands with the benzimidazole, thiazole and indolizine systems on the basis of 3-ethylquinoxalin-2(1H)-one and its derivatives. Ph.D. dissertation, Arbuzov AE Institute of Organic and Physical Chemistry, Kazan Research Center of the Russian Academy of Sciences, Kazan, Russia, p 138

    Google Scholar 

  • Jarrer AA, Halawi SS, Haddadin MJ (1976) Photolysis of some quinoxaline-1,4-dioxides. A method of structural assignment. heterocycles 4(6):1077–1082. doi:10.3987/R-1976-06-1077

    Google Scholar 

  • Joule JA, Mills K (2010a) Heterocyclic chemistry, 5th edn. Wiley, New York, pp 507–508

    Google Scholar 

  • Joule JA, Mills K (2010b) Heterocyclic chemistry, 5th edn. Wiley, New York, pp 462–463

    Google Scholar 

  • Kalinin AA (2000) Annelation of 3-substituted quinoxalinones. Ph.D. dissertation, A. E. Arbuzov Institute of Organic and Physical Chemistry: Kazan State University, Kazan, Russia, p 118

    Google Scholar 

  • Kalinin AA, Mamedov VA, Levin YA (2000) 2-Benzimidazolyl-3-phenylquinoxaline; Quinoxalino-benzimidazole rearrangement. Chem Heterocycl Compd 36(7):882–883

    Article  CAS  Google Scholar 

  • Kalinin AA, Isaykina OG, Mamedov VA (2007) Quinoxaline-benzimidazole rearrangements in the reactions of 3-alkanoylquinoxalin-2-ones with 1,2-phenylenediamines. Chem Heterocycl Compd 43:1307–1314. doi:10.1007/s10593-007-0198-3

    Article  CAS  Google Scholar 

  • Kametani T, Sota K, Shio M (1970) Studies on the syntheses of azole derivatives. Part I. Formation of 1-substituted-3-hydroxy-1H-indazole and 1-substituted benzimidazolin-2-one derivatives by thermal reaction of N-substituted-N-arylcarbamoyl azides. J Heterocycl Chem 7(4):807–813. doi:10.1002/jhet.5570070409

    Google Scholar 

  • Kamlesh G, Jamie B, Austin P, Julie B, Leslie W, Dulal P (2004) Orientating peptide residues and increasing the distance between pockets to enable fitting into MHC−TCR complex determine protection against malaria. Biochemistry 43(21):6645–6655. doi:10.1021/bi049698+

    Article  CAS  Google Scholar 

  • Kanoktanaporn S, MacBride JAH (1977) Heterocyclic biphenylenes: Synthesis of pyrazine and quinoxaline analogues by thermal nitrogen extrusion. Tetrahedron Lett 18(21):1817–1818. doi:10.1016/S0040-4039(01)83613-3

    Article  Google Scholar 

  • Kanoktanaporn S, MacBride JAH, King TJ (1980) Displacement of hydrazine hydrochloride from 1,4-dichlorophthalazines by bidentate nucleophiles with the formation of 2.2′-(1,2-arylene)bis-benzimidazoles and -benzthiazoles X-ray crystal structure of 2,3-bisbenzimidazol-2-ylquinoxaline. J Chem Research, (S), 406 or J Chem Research, (M), 4901–4934

    Google Scholar 

  • Keck GE, Webb R (1979) Carbon-nitrogen formation via bond acyl-nitroso compounds. Intramolecular ene processes. Tetrahedron Lett 20(14):1185–1186. doi:10.1016/S0040-4039(01)86097-4

    Article  Google Scholar 

  • Keck GE, Webb RR (1981) Alkaloid synthesis via intramolecular ene reactions. 1. Application to (±)-crinane. J Am Chem Soc 103(11):3173–3177. doi:10.1021/ja00401a039

    Article  CAS  Google Scholar 

  • Kilgor WW, White ER (1970) Decomposition of the systemic fungicide 1991 (Benlate). Bull Environ Contam Toxicol 5(1):67–69

    Article  Google Scholar 

  • Kim BH, Han R, Han TH et al (2002) Heterocyclizations towards 2-arylbenzimidazoles via intermolecular coupling of 2-nitroanilines and aryl aldehydes. Heterocycles 57(1):5–10. doi:10.3987/COM-01-9381

    Article  CAS  Google Scholar 

  • King FE, Acheson RM (1949) 297. The synthesis of benziminazoles from ortho-phenylenediamines and imino-ethers. J Chem Soc 1396–1400. doi:10.1039/JR9490001396

  • Knorr L (1884) Synthese von pyrrolderivaten. Ber 17(2):1635–1642. doi:10.1002/cber.18840170220

    Article  Google Scholar 

  • Kornblum N, Frazier HW (1966) A new and convenient synthesis of glyoxals, glyoxalate esters, and α-diketones. J Am Chem Soc 88(4):865–866. doi:10.1021/ja00956a063

    Article  CAS  Google Scholar 

  • Kornblum N, JonesWJ, Anderson GJ (1959) A new and selective method of oxidation. The conversion of alkyl halides and alkyl tosylates to aldehydes. J Am Chem Soc 81(15):4113–4114. doi:10.1021/ja01524a080

    Google Scholar 

  • Kost AN, Solomko ZF, Budylin VA, Semenova TS (1972) Synthesis of 5(and 6)-nitro-4-methyl-2,3-dihydro-1H-1,5-benzo-2-diazepinones. Chem Heterocyclic Compd 8(5):632–637

    Article  Google Scholar 

  • Krohnke FJ (1957) Zur sogenannten Beckmann-Umlagerung der nitrone. Liebigs Ann Chem 604(1):203–207. doi:10.1002/jlac.19576040123

    Article  CAS  Google Scholar 

  • Kubota Y, Shibata T, Babamoto-Horiguchi E, Uehara J, Funabiki K, Matsumoto S, Ebihara M, Matsui M (2009) Reaction of 2,3-diaminomaleonitrile with diones. Tetrahedron 65(12):2506–2511. doi:10.1016/j.tet.2009.01.053

    Article  CAS  Google Scholar 

  • Kurasawa Y, Takada A (1980) A new synthesis of furo[2,3-b]quinoxaline and its ring conversions. Heterocycles 14(3):281–284. doi:10.3987/R-1980-03-0281

    Article  CAS  Google Scholar 

  • Kurasawa Y, Satoh J, Ogura M, Okamoto Y, Takada A (1984) A convenient synthesis of novel 3-quinoxalinyl-1,5-benzodiazepines. Stable tautomers in 1,5-benzodiazepin-2-one ring system. Heterocycles 22(7):1531–1535. doi:10.3987/R-1984-07-1531

    Article  CAS  Google Scholar 

  • Kurasawa Y, Shimabukuro S, Okamoto Y, Takada A (1985a) Synthesis of novel quinoxalines by ring transformation of 3-quinoxalinyl-l,5-benzodiazepine. J Heterocyclic Chem 22(5):1461–1464. doi:10.1002/jhet.5570220567

    Article  CAS  Google Scholar 

  • Kurasawa Y, Okamoto Y, Ogura K, Takada A (1985b) Facile synthesis of novel 3-quinoxalinyl-1,5-benzodiazepines via ring transformation. Stable tautomers in the 1,5-benzodiazepin-2-one ring system. J Heterocycl Chem 22(3):661–664. doi:10.1002/jhet.5570220308

    Google Scholar 

  • Ladenburg A (1875) Derivate von diaminen. Ber 8(1):677–678. doi:10.1002/cber.187500801209

    Article  Google Scholar 

  • Lane ESJ (1955) A modified benziminazole synthesis. Part II. A route to unsymmetrically substituted 2:2′-dibenziminazolyls and methylenebis-2-benziminazoles. J Chem Soc 1079–1081. doi:10.1039/JR9550001079

    Google Scholar 

  • Lindberg P, Nordberg P, Alminger T, Brandstrom A, Wallmark B (1986) The mechanism of action of the antisecretory agent Omeprazole. J Med Chem 29(8):1327–1329. doi:10.1021/jm00158a001

    Article  CAS  Google Scholar 

  • Lippmann E, Shilov W (1984) Reaktionen mit 3-chlorochinoxalin-2-carbaldehyd. Collect Czech Chem Commun 49(5):1304–1310. doi:10.1135/cccc19841304

    Article  CAS  Google Scholar 

  • Lont PT, Van der Plas HC (1972) Ring transformations in reactions of heterocyclic halogeno compounds with nucleophtiles (XXIV): study of the mechanisms of the conversion of 2-halogenoquinoxalines into 2-aminoquinoxalines and benzimidazole by potassium amide in liquid ammonia. Rec Trav Chim Pays-Bas 91(7):850–860. doi:10.1002/recl.19720910712

    Article  CAS  Google Scholar 

  • Lučka A, Fryšová I, Slouka J (2007) An anomalous course of the reduction of 2-(3-oxo-3,4-dihydroquinoxalin-2-yl)benzene diazonium salt: a reinvestigation. Magn Res Chem 45(1):46–50. doi:10.1002/mrc.1915

    Article  CAS  Google Scholar 

  • Mamedov VA, Murtazina AM (2011) Recyclization reactions leading to benzimidazoles. Russ Chem Rev 80(5):397–420. doi:10.1070/RC2011v080n05ABEH004164

    Article  CAS  Google Scholar 

  • Mamedov VA, Zhukova NA (2013) Progress in quinoxaline synthesis (Part 2). In: Gribble GW, Joule JA (eds) Progress in heterocyclic chemistry, vol 25. Elsevier, pp 1–45

    Google Scholar 

  • Mamedov VA, Kalinin AA, Gubaidullin AT, Litvinov IA, Levin YaA (2002) The Kornblum reaction of α-substituted 3-benzyl-1,2-dihydro-2-oxoquinoxalines. Synthesis and structure of 3-benzoyl-2-oxo-1,2-dihydroquinoxaline. Chem Heterocycl Compd 38(10):1504–1510. doi:10.1023/A:1022601829731

    Google Scholar 

  • Mamedov VA, Kalinin AA, Gubaidullin AT, Chernova AV, Litvinov IA, Levin YaA, Shagidullin RR (2004) Ring contraction in reactions of 3-benzoylquinoxalin-2-ones with 1,2-phenylenediamines. Quinoxaline-benzoimidazole rearrangement. Russ Chem Bull, Int Ed 53(1):164–175. doi:10.1023/B:RUCB.0000024846.27508.76

    Google Scholar 

  • Mamedov VA, Kalinin AA, Gubaidullin AT, Isaikina OG, Litvinov IA (2005a) Synthesis and functionalization of 3-ethylquinoxalin-2(1H)-one. Russ J Org Chem 41(4):599–606. doi:10.1007/s11178-005-0210-2

    Article  CAS  Google Scholar 

  • Mamedov VA, Kalinin AA, Yanilkin VV, Gubaidullin AT, Latypov ShK, Balandina AA, Isaikina OG, Toropchina AV, Nastapova NV, Iglamova NA, Litvinov IA (2005b) 3-Indolizin-2-ylquinoxalines and the derived monopodands. Russ Chem Bull, Int Ed 54(11):2616–2625. doi:10.1007/s11172-006-0165-7

    Article  CAS  Google Scholar 

  • Mamedov VA, Kalinin AA, Gubaidullin AT, Gorbunova EA, Litvinov IA (2006) Quinoxaline-benzimidazole rearrangement in the synthesis of benzimidazole-based podands. Russ J Org Chem 42(10):1532–1543. doi:10.1134/S1070428006100241

    Article  CAS  Google Scholar 

  • Mamedov VA, Saifina DF, Gubaidullin AT, Saifina AF, Rizvanov IKh (2008a) An efficient one-step method for the synthesis of 2-(indolizin-2-yl)benzimidazoles from quinoxalinones and α-picoline via a novel rearrangement. Tetrahedron Lett 49(43):6231–6233. doi:10.1016/j.tetlet.2008.08.032

    Article  CAS  Google Scholar 

  • Mamedov VA, Saifina DF, Rizvanov IK, Gubaidullin AT (2008b) A versatile one-step method for the synthesis of benzimidazoles from quinoxalinones and arylenediamines via a novel rearrangement. Tetrahedron Lett 49(31):4644–4647. doi:10.1016/j.tetlet.2008.05.060

    Article  CAS  Google Scholar 

  • Mamedov VA, Murtazina AM, Gubaidullin AT, Hafizova EA, Rizvanov IKh (2009a) Efficient synthesis of 2-(pyrazol-3-yl)benzimidazoles from 3-arylacylidene-3,4-dihydroquinoxalin-2(1H)-ones and hydrazine hydrate via a novel rearrangement. Tetrahedron Lett 50(37):5186–5189. doi:10.1016/j.tetlet.2009.05.116

    Article  CAS  Google Scholar 

  • Mamedov VA, Saifina DF, Gubaidullin AT, Saifina AF, Rizvanov IKh, Ganieva VR (2009b) A novel rearrangement in the system 3-[aryl(chloro)methyl]quinoxalin-2(1H)-one–α-picoline as a simple and efficient route to indolizin-2-ylbenzimidazoles. Russ Chem Bull, Int Ed 58(9):1986–1990. doi:10.1007/s11172-009-0271-4

    Article  CAS  Google Scholar 

  • Mamedov VA, Saifina DF, Gubaidullin AT, Ganieva VR, Kadyrova SF, Rakov DV, Kh Rizvanov I, Sinyashin OG (2010a) Acid-catalyzed rearrangement of 3-(β-2-aminostyryl)quinoxalin-2(1H)ones–a new and efficient method for the synthesis of 2-benzimidazol-2-ylquinolines. Tetrahedron Lett 51(50):6503–6506. doi:10.1016/j.tetlet.2010.10.007

    Article  CAS  Google Scholar 

  • Mamedov VA, Zhukova NA, Beschastnova TN, Gubaidullin AT (2010a) A reaction for the synthesis of benzimidazoles and 1H-imidazo[4,5-b]pyridines via a novel rearrangement of quinoxalinones and their aza-analogues when exposed to 1,2-arylenediamines. Tetrahedron 66(51):9745–9753. doi:10.1016/j.tet.2010.10.026

    Article  CAS  Google Scholar 

  • Mamedov VA, Murtazina AM, Gubaidullin AT, Khafizova EA, Rizvanov IKh, Litvinov IA (2010b) Benzimidazoles and related heterocycles: 8. Acid-catalyzed rearrangement of 3-aryl-1′H-spiro[2-pyrazoline-5,2′-quinoxalin]- 3′(4′H)-ones as a new efficient method for the synthesis of 2-(pyrazol-3-yl)benzimidazoles. Russ Chem Bull, Int Ed 59(8):1645–1655. doi:10.1007/s11172-010-0289-7

    Google Scholar 

  • Mamedov VA, Khafizova EA, Gubaidullin AT, Murtazina AM, Adgamova DI, Samigullina AI, Litvinov IA (2011a) Benzimidazoles and related heterocycles 10. A novel acid-catalyzed rearrangement in the system 3-(α-aminobenzyl)quinoxalin-2(1H)-one-ethyl acetoacetate as a simple and efficient method for synthesizing 2-(pyrrol-3-yl)benzimidazoles. Russ Chem Bull Int Ed 60(2):368–372. doi:10.1007/s11172-011-0059-1

    Google Scholar 

  • Mamedov VA, Zhukova NA, Beschastnova TN, Gubaidullin AT, Rakov DV, Rizvanov IKh (2011b) A simple and efficient method for the synthesis of highly substituted imidazoles using 3-aroylquinoxalin-2(1H)-ones. Tetrahedron Lett 52(32):4280–4284. doi:10.1016/j.tetlet.2011.06.014

    Article  CAS  Google Scholar 

  • Mamedov VA, Zhukova NA, Beschastnova TN, Gubaidullin AT (2011c) Benzimidazoles and related heterocycles: 11. A novel acid-catalyzed rearrangement in the system 3-benzoylquinoxalin-2(1H)-one-aldehyde-ammonium acetate as a simple and efficient route to 2-(imidazol-4-yl)benzimidazoles. Russ Chem Bull, Int Ed 60(5):933–936. doi:10.1007/s11172-011-0146-3

    Google Scholar 

  • Mamedov VA, Zhukova NA, Beschastnova TN, Zakirova EI, Kadyrova SF, Mironova EV, Nikonova AG, Latypov ShK, Litvinov IA (2012) An efficient metal-free synthesis of 2-(pyrazin-2-yl)benzimidazoles from quinoxalinones and diaminomaleonitrile via a novel rearrangement. Tetrahedron Lett 53(3):292–296. doi:10.1016/j.tetlet.2011.11.013

    Article  CAS  Google Scholar 

  • Mamedov VA, Zhukova NA, Sykaev VV, Gubaidullin AT, Beschastnova TN, Adgamova DI, Samigullina AI, Latypov ShK (2013) A new facile, efficient synthesis and structure peculiarity of quinoxaline derivatives with two benzimidazole fragments. Tetrahedron 69(4):1403–1416. doi:10.1016/j.tet.2012.10.045

    Article  CAS  Google Scholar 

  • Mamedov VA, Galimullina VR, Zhukova NA, Kadyrova SF, Mironova EV, Rizvanov IKh, Latypov ShK (2014a) Quinoxalinone–benzimidazole rearrangement: an efficient strategy for the synthesis of structurally diverse quinoline derivatives with benzimidazole moieties. Tetrahedron Lett 55(31):4319–4324. doi:10.1016/j.tetlet.2014.06.023

    Article  CAS  Google Scholar 

  • Mamedov VA, Kadyrova SF, Zhukova NA, Galimullina VR, Polyancev FM, Latypov ShK (2014b) Friedländer reaction/quinoxalinone-benzimidazole rearrangement sequence: expeditious entry to diverse quinoline derivatives with the benzimidazole moieties. Tetrahedron 70(35):5934–5946. doi:10.1016/j.tet.2014.06.007

    Article  CAS  Google Scholar 

  • Mamedov VA, Murtazina AM, Adgamova DI, Zhukova NA, Beschastnova TN, Kharlamov SV, Rizvanov IKh, Latypov ShK (2014c) Three questionable cases in the chemistry of quinoxalines and benzodiazepines in the way of the syntheses of benzimidazoles. J Heterocyclic Chem 51(6):1664–1674. doi:10.1002/jhet.1788

    Article  CAS  Google Scholar 

  • Mamedov VA, Murtazina AM, Zhukova NA, Beschastnova TN, Rizvanov IKh, Latypov ShK (2014d) The reactions of 3-ethoxycarbonylmethylene-3,4-dihydroquinoxalin-2(1H)-one and its derivatives in the synthesis of benzodiazepines and benzimidazoles: reinvestigation, structural reassignment, and new insight. Tetrahedron 70(41):7567–7576. doi:10.1016/j.tet.2014.07.103

    Article  CAS  Google Scholar 

  • Mamedov VA, Zhukova NA, Zamaletdinova AI, Beschastnova TN, Kadyrova MS, Kh Rizvanov I, Syakaev VV, Latypov ShK (2014e) Reaction for the synthesis of benzimidazol-2-ones, imidazo[5,4-b]-, and imidazo[4,5-c]pyridin-2-ones via the rearrangement of quinoxalin-2-ones and their aza analogues when exposed to enamines. J Org Chem 79(19):9161–9169. doi:10.1021/jo501526a

    Article  CAS  Google Scholar 

  • Mamedov VA, Zhukova NA, Beschastnova TN, Syakaev VV, Krivolapov DB, Mironova EV, Zamaletdinova AI, Rizvanov IKh, Latypov ShK (2015) Rearrangement of quinoxalin-2-ones when exposed to enamines generated in situ from ketones and ammonium acetate: method for the synthesis of 1-(pyrrolyl)benzimidazolones. J Org Chem 80(3):1375–1386. doi:10.1021/jo502135d

    Article  CAS  Google Scholar 

  • Mann JFE, Schmieder RE, McQueen M et al (2008) Renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET study): a multicentre, randomised, double-blind, controlled trial. Lancet 372(9638):547–553. doi:10.1016/S0140-6736(08)61236-2

    Article  CAS  Google Scholar 

  • Mannhold R (1985) Pimobendan. Drugs Future 10(7):570–571

    Article  Google Scholar 

  • Marco-Contelles J, Pérez-Mayoral E, Samadi A, do Carmo Carreiras M, Soriano E (2009) Direct phosphonylation of aromatic azaheterocycles. Chem Rev 109(6):2652–2671. doi:10.1021/cr800315j

    Article  CAS  Google Scholar 

  • Mashkovskiy MD (2008) Lekarstvennye sredstva, 15th edn. Novaya Volna, Moscow

    Google Scholar 

  • Maxwell B, Brody G (1971) Antifungal activity of selected benzimidazole compounds. Appl Microbiol 21(5):944–945

    CAS  Google Scholar 

  • McClellan KJ, Markham A (1998) Telmisartan. Drugs 56(6):1039–1044. doi:10.2165/00003495-199856060-00007

    Article  CAS  Google Scholar 

  • Meral T, Hakan G, Rahmiye E, Recep E, Engin K, Nurten A (1997) Synthesis and antimicrobial activity of some new anilino benzimidazoles. Arch Pharm Pharm 330(12):372–376. doi:10.1002/ardp.19973301203

    Article  Google Scholar 

  • Migawa MT, Girardet J, Walker JA, Koszalka GW, Chamberlain SD, Drach JC, Townsend LB (1998) Design, synthesis, and antiviral activity of α-nucleosides: D- and L-isomers of lyxofuranosyl- and (5-deoxylyxofuranosyl)benzimidazoles. J Med Chem 41(8):1242–1251. doi:10.1021/jm970545c

    Article  CAS  Google Scholar 

  • Mironov AF, Alarkon KK, Evstigneeva RP (1973) Lability of the β-diethylaminoethyl group under the conditions of the formation of a pyrrole ring via the Knorr synthesis. Chem Heterocycl Compd 9(12):1487–1489. doi:10.1007/BF00477563

    Article  Google Scholar 

  • Mizutani T, Yoshida K, Kawazoe S (1994) Formation of toxic metabolites from thiabendazole and other thiazoles in mice. Identification of thioamides as ring cleavage products. Drug Metab Dispos 22:750–755

    CAS  Google Scholar 

  • Motortna IA, Grierson DS (1999) An intramolecular 1-azadiene Diels-Alder approach to the preparation of synthetic equivalents of pyridine. Tetrahedron Lett 40(40):7211–7214

    Article  Google Scholar 

  • Murtazina AM (2010) New possibilities of 1,3-bis(ethoxalyl)acetone in the synthesis of pyridines and five-, six-, seven- membered heterocyclic systems with two nitrogen atoms. Ph.D. dissertation, Arbuzov AE Institute of Organic and Physical Chemistry, Kazan Research Center of the Russian Academy of Sciences, Kazan, Russia, p 167

    Google Scholar 

  • Murthy SN, Madhav B, Nageswar YVD (2010) Revisiting the Hinsberg reaction: facile and expeditious synthesis of 3-substituted quinoxalin-2(1H)-ones under catalyst-free conditions in water. Helv Chim Acta 93(6):1216–1220. doi:10.1002/hlca.200900358

    Article  CAS  Google Scholar 

  • Nakamura S (1955) Structure of azomycin, a new antibiotic. Chem Pharm Bull 3(5):379–383

    Article  CAS  Google Scholar 

  • Naruse Y, Suzuki T, Inagaki S (2005) Geminal bond participation in Alder ene reaction. Tetrahedron Lett 46(40):6937–6940. doi:10.1016/j.tetlet.2005.07.166

    Article  CAS  Google Scholar 

  • Negwer M, Scharnow HG (2001) Organic chemical drugs and their synonyms, vols 2, 3. Wiley, Weinheim

    Google Scholar 

  • Newhouse T, Lewis CA, Eastman KJ, Baran PS (2010) Scalable total syntheses of N-linked Tryptamine dimers by direct indole-aniline coupling: Psychotrimine and Kapakahines B and F. J Am Chem Soc 132(20):7119–7137. doi:10.1021/ja1009458

    Article  CAS  Google Scholar 

  • Nofal ZM, Fahmy HH, Mohamed HS (2002) Synthesis, antimicrobial and molluscicidal activities of new benzimidazole derivatives. Arch Pharm Res 25(1):28–38. doi:10.1007/BF02975257

    Article  CAS  Google Scholar 

  • Novellino E, Cosimelli B, Ehlardo M, Greco G, Iadanza M, Lavecchia A, Rimoli MG, Sala A, Da Settimo A, Primofiore G, Da Settimo F, Taliani S, La Motta C, Klotz KN, Tuscano D, Trincavelli ML, Martini C (2005) 2-(Benzimidazol-2-yl)quinoxalines: a novel class of selective antagonists at Human A1 and A3 adenosine receptors designed by 3D database searching. J Med Chem 48(26):8253–8260. doi:10.1021/jm050792d

    Article  CAS  Google Scholar 

  • O’Sullivan DC, Wallis AK (1972) Antiviral benzimidazoles. Direct 1-substitution of 2-(alpha-hydroxybenzyl)benzimidazole and related compounds. J Med Chem 15(1):103–104. doi:10.1021/jm00271a032

    Article  Google Scholar 

  • Ogg RA, Bergstrom FW (1931) Cyclic ammono ketones1 and acid chlorides of the quinoxaline series. J Am Chem Soc 53(5):1846–1853. doi:10.1021/ja01356a032

    Article  CAS  Google Scholar 

  • Oppolzer W, Pfenninger E, Keller K (1973) A new stereoselective approach to substituted pyrrolidines by intramolecular ene-reactions. Preliminary communication. Helv Chim Acta 56(5):1807–1812. doi:10.1002/hlca.19730560543

    Article  CAS  Google Scholar 

  • Pakornwit S, Krasivan M (2014) Convenient access to novel functionalized pyrazino[1,2-b]isoquinolin-6-one and diazepino[1,2-b]isoquinolin-7-one scaffolds via the Cushman multicomponent reaction followed by post-condensation. Tetrahedron Lett 55(14):2299–2303. doi:10.1016/j.tetlet.2014.02.099

    Article  CAS  Google Scholar 

  • Palacios F, Rubiales G (1996) Aza-Wittig reaction of N-vinylic phosphazenes with carbonyl compounds. Azadiene-mediated synthesis of dihydropyridines and pyridines. Tetrahedron Lett 37(35):6379–6382. doi:10.1016/0040-4039(96)01352-4

    Article  CAS  Google Scholar 

  • Parvatkar PT, Parameswaran PS, Tilve SG (2009) An expeditious I2-catalyzed entry into 6H-indolo[2,3-b]quinoline system of cryptotackieine. J Org Chem 74(21):8369–8372. doi:10.1021/jo901361x

    Article  CAS  Google Scholar 

  • Phillips MA (1928a) CCCXVII–the formation of 2-substituted benziminazoles. J Chem Soc 13:2393–2399. doi:10.1039/JR9280002393

    Article  Google Scholar 

  • Phillips MA (1928b) XXV–the formation of 2-methylbenziminazoles. J Chem Soc 13:172–177. doi:10.1039/JR9280000172

    Article  Google Scholar 

  • Pinar A, Yurdakul P, Yildiz I, Temiz-Arpaci O, Acan NL, Aki-Sener E, Yalcin I (2004) Some fused heterocyclic compounds as eukaryotic topoisomerase II inhibitors. Biochem Biophys Res Commun 317(2):670–674. doi:10.1016/j.bbrc.2004.03.093

    Article  CAS  Google Scholar 

  • Piskin AK, Zeynep A-A, Atac FB, Musdal Y, Buyukbingol E (2009) DNA binding and antiproliferative effects of some benzimidazole retinoids. Turk J Biochem 4(1):39–43

    Google Scholar 

  • Porcari AR, Devivar RV, Kucera LS (1998) Design, synthesis, and antiviral evaluations of 1-(substituted benzyl)-2-substituted-5,6-dichlorobenzimidazoles as nonnucleoside analogues of 2,5,6-trichloro-1-(β-d-ribofuranosyl)benzimidazole. J Med Chem 41(8):1252–1262. doi:10.1021/jm970559i

    Article  CAS  Google Scholar 

  • Preston PN (1974) Synthesis, reactions, and spectroscopic properties of benzimidazoles. Chem Rev 74(3):279–314. doi:10.1021/cr60289a001

    Article  CAS  Google Scholar 

  • Rappoport Z (1994) The chemistry of enamines. Wiley, Chichester

    Book  Google Scholar 

  • Refaat HM (2010) Synthesis and anticancer activity of some novel 2-substituted benzimidazole derivatives. Eur J Med Chem 45(7):2949–2956. doi:10.1016/j.ejmech.2010.03.022

    Article  CAS  Google Scholar 

  • Rossi A, Hunger J, Kebrle K, Hoffmann H (1960) Benzimidazol-derivate und verwandte heterocyclen V. Die kondensation von o-phenylendiamin mit aliphatischen und alicyclischen β-ketoestern. Helv Chim Acta 43(5):1298–1313. doi:10.1002/hlca.19600430515

    Article  CAS  Google Scholar 

  • Ruediger EH, Gandhi SS, Gibson MS, Farcaşiu D, Uncuţa C (1986) Schmidt reaction of some constrained aromatic acids, and related topics. Can J Chem 64(3):577–579. doi:10.1139/v86-093

    Article  CAS  Google Scholar 

  • Saifina DF (2009) 3-(α-Chloroalkyl)–and 3-(α-chlorophenylalkyl)quinoxalin-2(1H)-ones in the synthesis of bi- and tri- cyclic azoloannelated systems. Ph.D. dissertation, Arbuzov AE Institute of Organic and Physical Chemistry, Kazan Research Center of the Russian Academy of Sciences, Kazan, Russia, p 161

    Google Scholar 

  • Salakhov MS, Umaeva VS, Salakhova YS, Idrisova SS (1999) Acylation of o-phenylenediamine with 4-cyclohexene-1,2-dicarboxylic anhydride. Rus J Org Chem 35(3):421–425

    Google Scholar 

  • Sarodnick G, Kempter GZ (1983) Hetarylquinoxalines as thiabendazoleanalogs. Part 4: Synthesis of 2-thiazolyl-quinoxalines. Pharmazie 38(12):829–832

    CAS  Google Scholar 

  • Seckin O, Dilek A, Sulhiye Y, Hakan G (2005) Synthesis and potent antimicrobial activity of some novel methyl or ethyl 1H-benzimidazole-5-carboxylates derivatives carrying amide or amidine groups. Bioorg Med Chem 13(5):1587–1597. doi:10.1016/j.bmc.2004.12.025

    Article  CAS  Google Scholar 

  • Sener E, Yalcin I, Temiz O, Oren I, Akin A, Ucarturk N (1997) Synthesis and structure-activity relationships of some 2,5-disubstituted benzoxazoles and benzimidazoles as antimicrobial agents. Farmaco 52(2):99–103

    CAS  Google Scholar 

  • Shaharyar M, Abdullah MM, Bakht MA, Majeed J (2010) Pyrazoline bearing benzimidazoles: search for anticancer agent. Eur J Med Chem 45(1):114–119. doi:10.1016/j.ejmech.2009.09.032

    Article  CAS  Google Scholar 

  • Sharma P, Kumar A, Sharma M (2006) Synthesis and QSAR studies on 5-[2-(2-methylprop1-enyl)-1H-benzimidazol-1yl]-4,6-diphenyl-pyrimidin-2-(5H)-thione derivatives as antibacterial agents. Eur J Med Chem 41(7):833–840. doi:10.1016/j.ejmech.2006.03.022

    Article  CAS  Google Scholar 

  • Shen R, Zhu S, Huang X (2009) Unexpected Pd-catalyzed coupling, propargyl-allenyl isomerization and Alder-ene reaction: facile synthesis of some not readily available 2,3-dihydrofuran derivatives. J Org Chem 74(11):4118–4123. doi:10.1021/jo900440u

    Article  CAS  Google Scholar 

  • Simone B, Mariola K, Agata G, Zygmunt K, Henning E, Paolo L, Gilles G, Frank S (2009) Substituted benzimidazoles: antiviral activity and synthesis of nucleosides (HL-3271DP). Arkivoc iii:225–250

    Google Scholar 

  • Singh N, Pandurangan A, Rana K, Anand P, Ahamad A, Tiwari AK (2012) Benzimidazole: a short review of their antimicrobial activities. Int Curr Pharmac J 1(5):119–127. doi:10.3329/icpj.v1i5.10284

    CAS  Google Scholar 

  • Smith MB (2001) March’s advanced organic chemistry, 5th edn. Wiley, New York, pp 1185–1187

    Google Scholar 

  • Smith MB (2013a) March’s advanced organic chemistry, 7th edn. Hooboken, New Jersey, pp 1481–1483

    Google Scholar 

  • Smith MB (2013b) March’s advanced organic chemistry, 7th edn. Hooboken, New Jersey, NY, pp 1067–1248

    Google Scholar 

  • Splitter JS, Calvin M (1965) Oxaziridines. I. The irradiation products of several nitrones 1. J Org Chem 30(10):3427–3436. doi:10.1021/jo01021a038

    Article  CAS  Google Scholar 

  • Streith J, Sigwatt C (1966) Contraction d’heterocycles aromatiques par voie photocmique. Tetrahedron Lett 7(13):1347–1350. doi:10.1016/S0040-4039(01)99720-5

    Article  Google Scholar 

  • Sundberg RJ (1965) Deoxygenation of nitro groups by trivalent phosphorus. Indoles from o-nitrostyrenes. J Org Chem 30(11):3604–3610. doi:10.1021/jo01022a006

    Article  CAS  Google Scholar 

  • Sundberg RJ, Yamazaki T (1967) Rearrangements and ring expansions during the deoxygenation of .beta.,.beta.-disubstituted o-nitrostyrenes. J Org Chem 32(2):290–294. doi:10.1021/jo01288a009

    Article  CAS  Google Scholar 

  • Taylor EC, McKillop A (1965) Reaction of 2,3-diphenylquinoxaline with amide ion. An unusual ring contraction. J Org Chem 30(8):2858–2859. doi:10.1021/jo01019a521

    Article  CAS  Google Scholar 

  • Tollari S, Cenini S, Crotti C, Gianella E (1994) Synthesis of heterocycles via palladium-catalyzed carbonylation of ortho-substituted organic nitro compounds in relatively mild conditions. J Mol Catal 87(2–3):203–214. doi:10.1016/0304-5102(93)E0228-9

    Article  CAS  Google Scholar 

  • Tomlin C (1994) The pesticide manual, 10 edn. Royal Soc Chem, Brit Crop Protect

    Google Scholar 

  • Tuncbilek M, Kiper T, Altanlar N (2009) Synthesis and in vitro antimicrobial activity of some novel substituted benzimidazole derivatives having potent activity against MRSA. Eur J Med Chem 44(3):1024–1033. doi:10.1016/j.ejmech.2008.06.026

    Article  CAS  Google Scholar 

  • Von Barchet R, Merz KW (1964) Über kondensationen von nicotinoylessigester mit aromatischen diaminen. Tetrahedron Lett 5(33):2239–2244. doi:10.1016/S0040-4039(00)71694-7

    Article  Google Scholar 

  • Von Niementowski S (1897) Neue methoden der darstellung der anhydroverbindungen. Ber 30(3):3062–3071. doi:10.1002/cber.189703003124

    Article  Google Scholar 

  • Walker KAM, Braemer AC, Hitt S, Jones RE, Mathews TR (1978) 1-[4-(4-Chlorophenyl)-2-(2,6-dichlorophenylthio)-n-butyl]-1H-imidazole nitrate, a new potent antifungal agent. J Med Chem 21(8):840–843. doi:10.1021/jm00206a028

    Article  CAS  Google Scholar 

  • Wang Z (2009) Comprehensive organic name reactions and reagents, vol 1. Wiley, Hoboken, New Jersey, pp 1137–1142

    Google Scholar 

  • Weidenhagen R (1936) Eine neue synthese von benzimidazol-derivaten. Ber 69B(10):2263–2272. doi:10.1002/cber.19360691010

    CAS  Google Scholar 

  • White AW, Almassy R, Calvert AH, Curtin NJ, Griffin RJ, Hostomsky Z, Maegley K, Newell DR, Golding BT (2000) Resistance-modifying agents. 9.1 Synthesis and biological properties of benzimidazole inhibitors of the DNA repair enzyme poly(ADP-ribose) polymerase. J Med Chem 43(22):4084–4097. doi:10.1021/jm000950v

    Article  CAS  Google Scholar 

  • Wiedermannová I, Slouka J, Humpa O, Lemr K (2003) An anomalous course of the reduction of 2-(3-oxo-3,4-dihydro-quinoxalin-2-yl)benzene diazonium salt. Synthesis of a new quinoxalino[1,2-c][1,2,3]benzotriazine system. J Heterocyclic Chem 40(2):357–358. doi:10.1002/jhet.5570400226

    Google Scholar 

  • Wienen W, Hauel N, Van Meel JCA, Narr B, Ries U, Entzeroth M (1993) Pharmacological characterization of the novel nonpeptide angiotensin II receptor antagonist, BIBR 277. Brit J Pharmacol 110(1):245–252

    Article  CAS  Google Scholar 

  • Wong K-K (2009) Recent developments in anti-cancer agents targeting the Ras/Raf/ MEK/ERK pathway. Recent Pat Anti-Cancer Drug Discovery 4(8):28–35. doi:10.2174/157489209787002461

    Article  CAS  Google Scholar 

  • Wright JB (1951) The chemistry of the benzimidazoles. Chem Rev 48(3):397–541. doi:10.1021/cr60151a002

    Article  CAS  Google Scholar 

  • Xu Z, Ayaz M, Capelli A, Hulme C (2012a) General one-pot, two-step protocol accessing a range of novel polycyclic heterocycles with high skeletal diversity. ACS Comb Sci 14(8):460–464. doi:10.1021/co300046r

    Article  CAS  Google Scholar 

  • Xu Z, De Moliner F, Capelli AP, Hulme C (2012b) Ugi/aldol sequence: expeditious entry to several families of densely substituted nitrogen heterocycles. Angew Chem Int Ed 51(32):8037–8040. doi:10.1002/anie.201202575

    Article  CAS  Google Scholar 

  • Zeynep A, Mehmet A, Canan K, Sulhiye Y, Erdem B, Hakan G (2006) Synthesis and potent antimicrobial activities of some novel retinoidal monocationic benzimidazoles. Arch Pharm Chem Life Sci 339(2):74–80. doi:10.1002/ardp.200500168

    Article  CAS  Google Scholar 

  • Zhu L, Zhang M (2004) Ortho-selective nucleophilic aromatic substitution reactions of polyhaloanilines with potassium/sodium O-ethyl xanthate: a convenient access to halogenated 2(3H)-benzothiazolethiones. J Org Chem 69(21):7371–7374. doi:10.1021/jo049056s

    Article  CAS  Google Scholar 

  • Zou R, Ayres K, Drach J, Townsend L (1996) Synthesis and antiviral evaluation of certain disubstituted benzimidazole ribonucleosides. J Med Chem 39(18):3477–3482. doi:10.1021/jm960157v

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vakhid A. Mamedov .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mamedov, V.A. (2016). Rearrangements of Quinoxalin(on)es for the Synthesis of Benzimidazol(on)es. In: Quinoxalines. Springer, Cham. https://doi.org/10.1007/978-3-319-29773-6_6

Download citation

Publish with us

Policies and ethics