Skip to main content

Synthesis of Imidazo[1,5-a]- and Imidazo[1,2-a]quinoxalines

  • Chapter
  • First Online:
Quinoxalines
  • 851 Accesses

Abstract

Heterocyclic systems containing the quinoxaline moiety are widely used in practice. Many of them have high biological activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Hashem AA, Gouda MA, Badria FA (2010) Synthesis of some new pyrimido[2′,1′:2,3]thiazolo[4,5-b]quinoxaline derivatives as anti-inflammatory and analgesic agents. Eur J Med Chem 45(5):1976–1981. doi:10.1016/j.ejmech.2010.01.042

    Article  CAS  Google Scholar 

  • Adegoke EA, Alo B (1983) Polycyclic nitrogen compounds. Part iii. Synthesis of 3,3a-dihydrothiazolo[3,4-a]quinoxalin-4-ones. J Heterocycl Chem 20(6):1513–1516. doi:10.1002/jhet.5570200615

    Google Scholar 

  • Ager IR, Barnes AC, Danswan GW, Hairsine PW, Kay DP, Kennewell PD, Matharu SS, Miller P, Robson P, Rowlands DA, Tully WR, Westwood R (1988) Synthesis and oral antiallergic activity of carboxylic acids derived from imidazo[2,1-c][1,4]benzoxazines, imidazo[1,2-a]quinolines, imidazo[1,2-a]quinoxalines, imidazo[1,2-a]quinoxalinones, pyrrolo[1,2-a]quinoxalinones, pyrrolo[2,3-a]quinoxalinones, and imidazo[2,1-b]benzothiazoles. J Med Chem 31(6):1098–1115. doi:10.1021/jm00401a009

    Article  CAS  Google Scholar 

  • Ahmad Y, Habib MS, Iqbal M, Qureshi MI, Craig JC, Garnett JL, Temple DM, Fischer A, Happer DAR, Vaughan J, Albert A, Willette RE, Daly JJ, Banks RE, Haszeldine RN, Sutcliffe H, Beer RJS, Slater RA, Griffith WP, Benn MH, Fields EK, Beard JH, Plesch PH, Carruthers W, Douglas AG, Battersby AR, Francis RJ, Johnson AW, Oldfield D, Rodrigo R, Shaw N, Clifford DR, Woodcock D, Edwards RL, Kale N, Birch AJ, White DA, Edwards AJ, Mouty MA, Peacock RD, Suddens AJ (1964) Notes. 769. Quinoxaline derivatives. Part I. Intramolecular rearrangement of certain quinoxalinecarboxyanilides to 8-piroindoles. J Chem Soc 4056–4088. doi:10.1039/JR9640004053

  • Albaugh P, Hutchison AJ (1993) Certain imidazoquinoxalinones; a new class of GABA Brain receptor ligands. US Patent 5182386, 26 Jan 1993

    Google Scholar 

  • Albaugh P, Hutchison AJ (1995) Certain imidazoquinoxalinols; a new class of GABA Brain receptor ligands. US Patent 5473073, 05 Dec 1995

    Google Scholar 

  • Bacon RGR, Hamilton SD (1974) Metal ions and complexes in organic reactions. Part XVIII. Structural variations in the production of polycyclic heterocyclic systems by iron(II)-promoted cyclisations of nitro-substituted precursors. J Chem Soc, Perkin Trans 1:1970–1975. doi:10.1039/P19740001970

    Article  Google Scholar 

  • Badran MM, Abonzid KA, Hussein MH (2003) Synthesis of certain substituted quinoxalines as antimicrobial agents (part II). Arch Pharm Res 26(2):107–113

    Article  CAS  Google Scholar 

  • Baffert F, Regnier CH, De Pover A, Pissot-Soldermann C, Taveres GA, Blasco F, Brueggen J, Chene P, Drueckes P, Erdmann D, Furet P, Gerspacher M, Lang M, Ledieu D, Nolan L, Ruetz S, Trappe J, Vanghrevelinghe E, Wartmann M, Wyder L, Hofmann F, Radimerski T (2010) Potent and selective inhibition of polycythemia by the quinoxaline JAK2 inhibitor NVP-BSK805. Mol Cancer Ther 9(7):1945–1955. doi:10.1158/1535-7163.MCT-10-0053

    Article  CAS  Google Scholar 

  • Bakherad M, Keivanloo A, Samangooei S (2012) Synthesis of 1-aryl-substituted-4-chloroimidazo[1,2-a]quinoxalines catalyzed by PdCl2 in water. Tetrahedron Lett 53(12):1447–1449. doi:10.1016/j.tetlet.2012.01.028

    Article  CAS  Google Scholar 

  • Barrish JC, Spergel SH (2001) Imidazoquinoxaline protein tyrosine kinase inhibitors. US Patent 6239133, 29 May 2001.

    Google Scholar 

  • Basanagoudar LD, Mahajanshetti CS, Dambal SB (1991) Synhesis of 7-phenyl-5,6-dihydroindolo[1,2-a]quinoxalines. Indian J Chem B 30:883–885

    Google Scholar 

  • Beaulieu F, Ouellet C, Ruediger EH, Belema M, Qiu Y, Yang X, Banville J, Burke JR, Gregor KR, MacMaster JF, Martel A, McIntyre KW, Pattoli MA, Zusi FC, Vyas D (2007) Synthesis and biological evaluation of 4-amino derivatives of benzimidazoquinoxaline, benzimidazoquinoline, and benzopyrazoloquinazoline as potent IKK inhibitors. Bioorg Med Chem Lett 17(5):1233–1237. doi:10.1016/j.bmcl.2006.12.017

    Article  CAS  Google Scholar 

  • Benkovic SJ, Benkovic PA, Comfort D (1969) Models for tetrahydrofolic acid. I. Condensation of formaldehyde with tetrahydroquinoxaline analogs. J Am Chem Soc 91(19):5270–5279. doi:10.1021/ja01047a016

    Article  CAS  Google Scholar 

  • Benkovic SJ, Bullard WP, Benkovic PA (1972) Models for tetrahydrofolic acid. III. Hydrolytic interconversions of the tetrahydroquinoxaline analogs at the formate level of oxidation. J Am Chem Soc 94(21):7542–7549. doi:10.1021/ja00776a043

    Article  CAS  Google Scholar 

  • Benkovic SJ, Barrows TH, Farina PR (1973) Models for the tetrahydrofolic acid. IV. Reactions of amines with formamidinium tetrahydroquinoxaline analogs. J Am Chem Soc 95(25):8414–8420. doi:10.1021/ja00806a036

    Article  CAS  Google Scholar 

  • Blackburn C, Guan B, Fleming P, Shiosaki K, Tsai S (1998) Parallel synthesis of 3-aminoimidazo[1,2-a]pyridines and pyrazines by a new three-component condensation. Tetrahedron Lett 39(22):3635–3638. doi:10.1016/S0040-4039(98)00653-4

    Article  CAS  Google Scholar 

  • Borchardt AJ, Beauregard C, Cook T, Davis RL, Gamache DA, Yanni JM (2010) Heterocyclic inhibitors of histamine receptors for the treatment of disease. WO Patent 2010030785, 18 Mar 2010

    Google Scholar 

  • Borchardt A, Davis R, Beauregard C, Becker D, Gamache D, Noble SA, Hellberg M, Klimko P, Qiu Z, Payne J, Yanni J (2011a) Heterocyclic inhibitors of histamine receptors for the treatment of disease. US Patent 2011/0257137, 20 Oct 2011

    Google Scholar 

  • Borchardt A, Davis R, Beauregard C, Becker D, Gamache D, Noble SA, Hellberg MR, Klimko PG, Zhihai Q, Payne JE, Yanni J (2011b) Heterocyclic inhibitors of histamine receptors for the treatment of disease. WO Patent 2011112731, 15 Sep 2011

    Google Scholar 

  • Brock ED, Lewis DM, Yousaf TI, Harper HH (1999) Reactive dye compounds. WO Patent 99/51688, 14 Oct 1999

    Google Scholar 

  • Burke JR, Pattoli MA, Gregor KR, Brassil PJ, MacMaster JF, McIntyre KW, Yang X, Iotzova VS, Clarke W, Strnad J, Qiu Y, Zusi FC (2003) Mechanisms of signal transduction: BMS-345541 Is a highly selective inhibitor of IκB kinase that binds at an allosteric site of the enzyme and blocks NF-κB-dependent transcription in mice. J Biol Chem 278:1450–1456. doi:10.1074/jbc.M209677200

    Article  CAS  Google Scholar 

  • Caamano O, Fernández F, García-Mera X, Rodríguez-Borges JE (2000) A short, efficient synthesis of the chiral auxiliary (+)-8-phenylneomenthol. Tetrahedron Lett 41(21):4123–4125. doi:10.1016/S0040-4039(00)00594-3

    Article  CAS  Google Scholar 

  • Campiani G, Morelli E, Gemma S, Nacci V, Butini S, Hamon M, Novellino E, Greco G, Cagnotto A, Goegan M, Cervo L, Valle FD, Fracasso C, Caccia S, Menninir T (1999) Pyrroloquinoxaline derivatives as high-affinity and selective 5-HT3 receptor agonists: synthesis, further structure-activity relationships, and biological studies. J Med Chem 42(21):4362–4379. doi:10.1021/jm990151g

    Article  CAS  Google Scholar 

  • Castro PP, Zhao G, Masangkay GA, Hernandez C, Gutierrez-Tunstad LM (2004) Quinoxaline excision: a novel approach to tri- and diquinoxaline cavitands. Org Lett 6(3):333–336. doi:10.1021/ol036045x

    Article  CAS  Google Scholar 

  • Catarzi D, Cecchi L, Colotta V, Melani F, Filacchioni G, Martini C, Giusti L, Lucacchini A (1994) Structure-activity relationships of 1,2,4-triazolo[1,5-a]quinoxalines and their 1-deaza analogs imidazo[1,2-a]quinoxalines at the benzodiazepine receptor. J Med Chem 37(18):2846–2850. doi:10.1021/jm00044a004

    Article  CAS  Google Scholar 

  • Ceccarelli S, d’Alessandro A, Prinzivalli S, Zanarella S (1998) Imidazo[1,2-a]quinoxalin-4-amines: a novel class of nonxanthine A1-adenosine receptor antagonists. Eur J Med Chem 33(12):943–955. doi:10.1016/S0223-5234(99)80019-1

    Article  CAS  Google Scholar 

  • Cheeseman GWH, Cookson RF (1979) Condensed pyrazines, vol 35. Wiley, New York, p 835

    Google Scholar 

  • Chen P, Barrish JC, Iwanovicz E, Lin J, Bednarz MS, Chen BC (2001) Reaction of quinoxalin-2-ones with TosMIC reagent: synthesis of imidazo[1,5-a]quinoxalin-4-ones. Tetrahedron Lett 42(26):4293–4295. doi:10.1016/S0040-4039(01)00697-9

    Article  CAS  Google Scholar 

  • Chen P, Iwanovicz EJ, Norris D, Gu HH, Lin J, Moquin RV, Das J, Wityak J, Spergel SH, de Fex H, Pang S, Pitt S, Shen DR, Schieven GL, Barrish JC (2002a) Synthesis and SAR of novel imidazoquinoxaline-based Lck inhibitors: improvement of cell potency. Bioorg Med Chem Lett 12(21):3153–3156. doi:10.1016/S0960-894X(02)00677-7

    Article  CAS  Google Scholar 

  • Chen P, Norris D, Iwanowicz EJ, Spergel SH, Lin J, Gu HH, Shen Z, Wityak J, Lin TA, Pang S, De Fex HF, Pitt S, Shen DR, Doweyko AM, Bassolino DA, Roberge JY, Poss MA, Chen BC, Schieven GL, Barrish JC (2002b) Discovery and initial SAR of imidazoquinoxalines as inhibitors of the Src-family kinase p56Lck. Bioorg Med Chem Lett 12(10):1361–1364. doi:10.1016/S0960-894X(02)00191-9

    Article  CAS  Google Scholar 

  • Chen BC, Sundeen JE, Bednarz MS, Chen P (2004a) Processes for preparing imidazoquinoxalinones, heterocyclic-substituted imidazopyrazinones, imidazoquinoxalines and heterocyclic-substituted imidazopyrazines. US Patent 20040180898, 16 Sep 2004

    Google Scholar 

  • Chen BC, Zhao R, Bednarz MS, Wang B, Sundeen JE, Barrish JC (2004b) A new strategy for the construction of the imidazo[1,5-a]quinoxalin-4-one ring system and its application to the efficient synthesis of BMS-238497, a novel and potent Lck inhibitor. J Org Chem 69(3):977–979. doi:10.1021/jo0355348

    Article  CAS  Google Scholar 

  • Chen P, Doweyko AM, Norris D, Gu HH, Spergel SH, Das J, Moquin RV, Lin J, Wityak J, Iwanowicz EJ, McIntyre KW, Shuster DJ, Behnia K, Chong S, de Fex H, Pang S, Pitt S, Shen DR, Thrall S, Stanley P, Kocy OR, Witmer MR, Kanner SB, Schieven GL, Barrish JC (2004c) Imidazoquinoxaline Src-family kinase p56Lck inhibitors: SAR, QSAR, and the discovery of (S)-N-(2-chloro-6-methylphenyl)-2-(3-methyl-1-piperazinyl)imidazo-[1,5-a]pyrido[3,2-e]pyrazin-6-amine (BMS-279700) as a potent and orally active inhibitor with excellent in vivo antiinflammatory activity. J Med Chem 47(18):4517–4529. doi:10.1021/jm030217e

    Article  CAS  Google Scholar 

  • Chen CH, Kuo J, Yellol GS, Sun CM (2011) Regioselective, unconventional Pictet-Spengler cyclization strategy toward the synthesis of benzimidazole-linked imidazoquinoxalines on a soluble polymer support. Chem Asian J 6(6):1557–1565. doi:10.1002/asia.201000913

    Article  CAS  Google Scholar 

  • Colotta V, Cecchi L, Catarzi D, Filacchioni G, Martini C, Tacchi P, Lucacchini A (1995) Synthesis of some tricyclic heteroaromatic systems and their A1 and A2a adenosine binding activity. Eur J Med Chem 30(2):133–139. doi:10.1016/0223-5234(96)88218-3

    Article  CAS  Google Scholar 

  • Dailey S, Feast JW, Peace RJ, Sage IC, Till S, Wood EL (2001) Synthesis and device characterisation of side-chain polymer electron transport materials for organic semiconductor applications. J Mater Chem 11:2238–2243. doi:10.1039/B104674H

    Article  CAS  Google Scholar 

  • Danswan GW, Hairsine PW, Rowlands DA, Taylor JB, Westwood R (1982) Synthesis and reactions of some novel imidazobenzoxazines and related systems. J Chem Soc, Perkin Trans 1:1049–1058. doi:10.1039/P19820001049

    Article  Google Scholar 

  • Davey DD (1999) Imidazoquinoxalinones, their aza analogs and process for their preparation. EP Patent 0400583, 17 Nov 1999

    Google Scholar 

  • Davey DD, Erhardt PW, Cantor EH, Greenberg SS, Ingebretsen WR, Wiggins J (1991) Novel compounds possessing potent cAMP and cGMP phosphodiesterase inhibitory activity. Synthesis and cardiovascular effects of a series of imidazo[1,2-a]quinoxalinones and imidazo[1,5-a]quinoxalinones and their aza analogs. J Med Chem 34(9):2671–2677. doi:10.1021/jm00113a002

    Article  CAS  Google Scholar 

  • Deleuze-Masquéfa C, Gerebtzoff G, Subra G, Fabreguettes J-R, Ovens A, Carraz M, Strub M-P, Bompart J, George P, Bonnet PA (2004) Design and synthesis of novel imidazo[1,2-a]quinoxalines as PDE4 inhibitors. Bioorg Med Chem 12(5):1129–1139. doi:10.1016/j.bmc.2003.11.034

    Article  CAS  Google Scholar 

  • Deleuze-Masquéfa C, Moarbess G, Bonnet PA, Pinguet F, Bazarbachi A (2009a) Imidazo[1,2-a]quinoxalines et derivatives pour le traitment des cancer. FR Patent 2921927, 10 Aug 2009

    Google Scholar 

  • Deleuze-Masquéfa C, Moarbess G, Bonnet PA, Pinguet F, Bazarbachi A, Bressolle FMM (2009b) Imidazo[1,2-a]quinoxalines and derivatives thereof for treating cancers. WO Patent 2009/043934, 09 Aug 2009

    Google Scholar 

  • Deleuze-Masquéfa C, Moarbess G, Khier S, David N, Gayraud-Paniagua SC, Bressolle F, Pinguet F, Bonnet PA (2009c) New imidazo[1,2-a]quinoxaline derivatives: synthesis and in vitro activity against human melanoma. Eur J Med Chem 44(9):3406–3411. doi:10.1016/j.ejmech.2009.02.007

    Article  CAS  Google Scholar 

  • Deleuze-Masquéfa C, Moarbess G, Bonnet PA, Pinguet F, Bazarbachi A, Bressolle F (2010) Imidazo[1,2-a]quinoxalines and derivatives for the treatment of cancers. US Patent 2010249142, 30 Sep 2010

    Google Scholar 

  • DeMoliner F, Hulme C (2012a) Straightforward assembly of phenylimidazoquinoxalines via a one-pot two-step MCR process. Org Lett 14(5):1354–1357. doi:10.1021/ol3003282

    Article  CAS  Google Scholar 

  • DeMoliner F, Hulme C (2012b) A Van Leusen deprotection-cyclization strategy as a fast entry into two imidazoquinoxaline families. Tetrahedron Lett 53(43):5787–5790. doi:10.1016/j.tetlet.2012.08.072

    Article  CAS  Google Scholar 

  • Dietrich B, Diederchsen U (2005) Synthesis of cyclopeptidic analogues of triostin a with quinoxalines or nucleobases as chromophores. Eur J Org Chem 1:147–153. doi:10.1002/ejoc.200400548

    Article  CAS  Google Scholar 

  • Duan JP, Sun PP, Cheng CH (2003) New iridium complexes as highly efficient orange–red emitters in organic light-emitting diodes. Adv Mater 15(3):224–228. doi:10.1002/adma.200390051

    Article  CAS  Google Scholar 

  • El-Ashry ESH, Abdel-Rahman AAH, Rashed N, Rasheed HA (1999) Homoacyclovir analogues of unnatural bases and their activity against hepatitis B virus. Pharmazie 54(12):893–897

    CAS  Google Scholar 

  • Ellames GJ, Jaxa-Chamiec AA (1987) Substituted dihydroimidazo[1,2-a]quinoxalines. European Patent 0214632, 18 Mar 1987

    Google Scholar 

  • Frohlich LG, Kotsonis P, Traub H, Taghavi-Moghadam S, Al-Masoudi N, Hofmann H, Strobel H, Matter H, Pfleiderer W, Schmid HW (1999) Inhibition of neuronal nitric oxide synthase by 4-amino pteridine derivatives: structure-activity relationship of antagonists of 6(R)–5,6,7,8-tetrahydrobiopterin cofactor. J Med Chem 42(20):4108–4121. doi:10.1021/jm981129a

    Article  CAS  Google Scholar 

  • Giranda VL, Miyashiro JM, Penning TD, Woods KW (2008) Inhibitors of poly(ADP-ribose)polymerase. US Patent 2008/0161292, 03 Jul 2008

    Google Scholar 

  • Groebke K, Weber L, Mehlin F (1998) Synthesis of imidazo[1,2-a] annulated pyridines, pyrazines and pyrimidines by a novel three-component condensation. Synlett 6:661–663. doi:10.1055/s-1998-1721

    Article  Google Scholar 

  • Hansen HC, Waetjen F (1989a) Imidazoquinoxaline compounds and their prepapation and use. EP Patent 0347094, 20 Dec 1989

    Google Scholar 

  • Hansen HC, Waetjen F (1989b) Imidazoquinoxaline compounds and their prepapation and use. EP Patent 0320136, 14 Jun 1989

    Google Scholar 

  • Hansen HC, Waetjen F (1989c) Imidazoquinoxaline compounds and their prepapation and use. EP Patent 0344943, 06 Dec 1989

    Google Scholar 

  • Hansen HC, Waetjen F (1990) Imidazoquinoxaline compounds and their prepapation and use. ZA Patent 8904430, 28 Feb 1989

    Google Scholar 

  • Hariharakrishnan VS, Hariprasad K, Rao BV, Singh AN (2008) Synthesis and antiallergy activity of 2-aryl-5-aroylmethylimidazo [1,2-a]quinoxalin-4-one. Indian J Chem B 47(8):1281–1283

    Google Scholar 

  • Hazeldine ST, Polin L, Kushner J, White K, Corbett TH, Biehl J, Horwitz (2005) Part 3: Synthesis and biological evaluation of some analogs of the antitumor agents, 2-{4-[(7-chloro-2-quinoxalinyl)oxy]phenoxy}propionic acid, and 2-{4-[(7-bromo-2-quinolinyl)oxy]-phenoxy}-propionic acid. J Bioorg Med Chem 13(4):1069–1081. doi:10.1016/j.bmc.2004.11.034

    Google Scholar 

  • Heine HW (1962) The isomerization of aziridine derivatives. Angew Chem 1(10):528–532. doi:10.1002/anie.196205281

    Article  Google Scholar 

  • Heine HW, Brooker AG (1962) The isomerization of aziridine derivatives. VI. The rearrangement of some 2-(1-aziridinyl)quinoxalines. J Org Chem 27(8):2943–2944. doi:10.1021/jo01055a522

    Article  CAS  Google Scholar 

  • Hirotaka O, Kei Y, Hirochi T (1970) Synthesis of condensed quinoxalines. III. 1,2-Dihydroimidazo[1,2-a]quinoxalines and 1,2-dihydro-3H-pyrimido[1,2-a]quinoxalines. Yakygaku Zasshi (J Pharm Soc Jpn) 90(11):1391–1395

    Google Scholar 

  • Horton DA, Bourne GT, Smythe ML (2003) The combinatorial synthesis of bicyclic privileged structures or privileged substructures. Chem Rev 103(3):893–930. doi:10.1021/cr020033s

    Article  CAS  Google Scholar 

  • Huang A, Chen Y, Zhou Y, Guo W, Wu X, Ma C (2013a) An efficient one-pot synthesis of benzo[4,5]imidazo[1,2-a]quinoxalines via copper-catalyzed process. Org Lett 15(21):5480–5483. doi:10.1021/ol4026292

    Article  CAS  Google Scholar 

  • Huang L, Yu R, Zhu X, Wan Y (2013b) A recyclable Cu-catalyzed C–N coupling reaction in water and its application to synthesis of imidazo[1,2-a]quinoxaline. Tetrahedron 69(42):8974–8977. doi:10.1016/j.tet.2013.07.036

    Article  CAS  Google Scholar 

  • Ivachtchenko AV, YaA Ivanenkov, Kysil VM, Krasavin MYu, Ilyin AP (2010) Multicomponent reactions of isocyanides in the synthesis of heterocycles. Russ Chem Rev 79(9):787–817. doi:10.1070/RC2010v079n09ABEH004086

    Article  CAS  Google Scholar 

  • Jacobsen EJ, Stelzer LS, Belonga KL, Carter DB, Im WB, Sethy VH, Tang AH, von Voigtlander PF, Petke JD (1996a) 3-Phenyl-substituted imidazo[1,5-a]quinoxalin-4-ones and imidazo[1,5-a]quinoxaline ureas that have high affinity at the GABAA/benzodiazepine receptor complex. J Med Chem 39(19):3820–3836. doi:10.1021/jm960070+

    Article  CAS  Google Scholar 

  • Jacobsen EJ, TenBrink RE, Stelzer LS, Belonga KL, Carter DB, Im HK, Im WB, Sethy VH, Tang AH, von Voigtlander PF, Petke JD (1996b) High-affinity partial agonist imidazo[1,5-a]quinoxaline amides, carbamates, and ureas at the γ-aminobutyric acid A/benzodiazepine receptor complex. J Med Chem 39(1):158–175. doi:10.1021/jm940765f

    Article  CAS  Google Scholar 

  • Jacobsen EJ, Stelzer LS, TenBrink RE, Belonga KL, Carter DB, Im HK, Im WB, Sethy VH, Tang AH, von Voigtlander PF, Petke JD, Zhong WZ, Mickelson JW (1999) Piperazine imidazo[1,5-a]quinoxaline ureas as high-affinity GABAA ligands of dual functionality. J Med Chem 42(7):1123–1144. doi:10.1021/jm9801307

    Article  CAS  Google Scholar 

  • Jeppesen L (1995) Heterocyclic compounds and their preparation and use. WO Patent 95/21842, 17 Aug 1995

    Google Scholar 

  • Jiang W, Sui Z, Chen X (2002) Synthesis of optically pure pyrroloquinolones via Pictet-Spengler and Winterfeldt reactions. Tetrahedron Lett 43(49):8941–8945. doi:10.1016/S0040-4039(02)02147-0

    Article  CAS  Google Scholar 

  • Kaizawa H, Sugita M, Azami H, Seo R, Nomura T, Yamamoto S, Yamamoto H, Tsuchiya K, Kubota H, Kamijo K (2011) Quinoxaline compound. US Patent 20110319385, 29 Dec 2011

    Google Scholar 

  • Kalinin AA, Mamedov VA (2008a) Competition of imidazo-annulation and pyrrole-formation in the reactions of benzylamine with 3-acetylquinoxalin-2-ones. Russ Chem Bull, Int Ed 57(1):219–220. doi:10.1007/s11172-008-0035-6

    Article  CAS  Google Scholar 

  • Kalinin AA, Mamedov VA (2008b) Polyfused nitrogen heterocycles: XIX. Oxidative imidazo-fusion of 3-benzoylquinoxalin-2-ones with benzylamines in the synthesis of bis(imidazo[1,5-a]quinoxalin-1- and -5-yl) derivatives. Russ. J Org Chem 44(5):736–740. doi:10.1134/S1070428008050187

    CAS  Google Scholar 

  • Kalinin AA, Mamedov VA (2010) Pyrrolo[l,2-a]quinoxalines on a basis of pyrroles. Khim Geterotsikl Soedin 12:1763–1787

    Google Scholar 

  • Kalinin AA, Voloshina AD, Kulik NV, Zobov VV, Mamedov VA (2013) Antimicrobial activity of imidazo[1,5-a]quinoxaline derivatives with pyridinium moiety. Eur J Med Chem 66:345–354. doi:10.1016/j.ejmech.2013.05.038

    Article  CAS  Google Scholar 

  • Katori T, Itoh S, Sato M, Yamataka H (2010) Reaction pathways and possible path bifurcation for the Schmidt reaction. J Am Chem Soc 132(10):3413–3422. doi:10.1021/ja908899u

    Article  CAS  Google Scholar 

  • Khattab SN, Hassan SY, Bekhit AA, El Massry AM, Langer V (2010) Synthesis of new series of quinoxaline based MAO-inhibitors and docking studies. Eur J Med Chem 45(10):4479–4489. doi:10.1016/j.ejmech.2010.07.008

    Article  CAS  Google Scholar 

  • Khier S, Moarbess G, Deleuze-Masquéfa C, Solassol I, Margout D, Pinguet F, Bonnet PA, Bressolle FMM (2009) Quantitation of imidazo[1,2-a]quinoxaline derivatives in human and rat plasma using LC/ESI-MS. J Sep Sci 32(9):1363–1373. doi:10.1002/jssc.200800668

    Article  CAS  Google Scholar 

  • Khier S, Deleuze-Masquéfa C, Moarbess G, Gattacceca F, Margout D, Solassol I, Cooper JF, Pinguet F, Bonnet PA, Bressolle FMM (2010a) Pharmacology of EAPB0203, a novel imidazo[1,2-a]quinoxaline derivative with anti-tumoral activity on melanoma. Eur J Pharm Sci 39(1–3):23–29. doi:10.1016/j.ejps.2009.10.006

    Article  CAS  Google Scholar 

  • Khier S, Gattacceca F, El Messaoudi S, Lafaille F, Deleuze-Masquéfa C, Bompart J, Cooper JF, Solassol I, Pinguet F, Bonnet PA, Bressolle FMM (2010b) Metabolism and pharmacokinetics of EAPB0203 and EAPB0503, two imidazoquinoxaline compounds previously shown to have antitumoral activity on melanoma and T-lymphomas. Drug Metab Dispos 38(10):1836–1847. doi:10.1124/dmd.110.034579

    Article  CAS  Google Scholar 

  • Kim KH, Maderna A, Schnute ME, Hegen M, Mohan S, Miyashiro J, Lin L, Li E, Keegan S, Lussier J, Wrocklage C, Nickerson-Nutter CL, Wittwer AJ, Soutter H, Caspers N, Han S, Kurumbail R, Dunussi-Joannopoulos K, Douhan J III, Wissner A (2011) Imidazo[1,5-a]quinoxalines as irreversible BTK inhibitors for the treatment of rheumatoid arthritis. Bioorg Med Chem Lett 21(21):6258–6263. doi:10.1016/j.bmcl.2011.09.008

    Article  CAS  Google Scholar 

  • King FE, Clark-Lewis JW (1951) 682. The structures of some supposed azetid-2: 4-diones. Part III. The “alloxan-5-o-dimethylaminoanil” of Rudy and Cramer, and its alkali hydrolysis product. J Chem Soc 3080–3085. doi:10.1039/JR9510003080

    Google Scholar 

  • Kollenz G (1972) Synthesen von heterocyclen, CLXX1) Reaktionen mit cyclischen oxalylverbindungen, X2) zur reaktion von 2-chinoxalinonen mit polyphosphorsäure. Justus Liebigs Ann Chem 762(1):23–28. doi:10.1002/jlac.19727620104

    Article  CAS  Google Scholar 

  • Krasavin MYu, Parchinsky VV (2008) Expedient entry into 1,4-dihydroquinoxalines and quinoxalines via a novel variant of isocyanide-based MCR. Synlett 5:645–648. doi:10.1055/s-2008-1032106

    Article  CAS  Google Scholar 

  • Krasavin M, Shkavrov S, Parchinsky V, Bukhryakov K (2009) Imidazo[1,2-a]quinoxalines accessed via two sequential isocyanide-based multicomponent reactions. J Org Chem 74(6):2627–2629. doi:10.1021/jo900050k

    Article  CAS  Google Scholar 

  • Kundu B, Sawant D, Chhabra R (2005) A modified strategy for Pictet–Spengler reaction leading to the synthesis of imidazoquinoxalines on solid phase. J Comb Chem 7(2):317–321. doi:10.1021/cc049851j

    Article  CAS  Google Scholar 

  • Kurasawa Y, Ichikawa M, Takada A (1983) A convenient and simplified method for synthesis of 1,4-dioxo-1,2,4,5-tetrahydroimidazo[1,5-a]quinoxalines. Heterocycles 20(2):269–271. doi:10.3987/R-1983-02-0269

    Article  CAS  Google Scholar 

  • Lafaille F, Banaigs B, Inguimbert N, Enjalbal C, Doulain PE, Bonnet PA, Masquéfa C, Bressolle FMM (2012) Characterization of a new anticancer agent, EAPB0203, and its main metabolites: nuclear magnetic resonance and liquid chromatography-mass spectrometry studies. Anal Chem 84(22):9865–9872. doi:10.1021/ac3021483

    Article  CAS  Google Scholar 

  • Lafaille F, Solassol I, Enjalbal C, Bertrand B, Doulain PE, Vappiani J, Bonnet PA, Deleuze-Masquéfa C, Bressolle FMM (2014) Structural characterization of in vitro metabolites of the new anticancer agent EAPB0503 by liquid chromatography–tandem mass spectrometry. J Pharm Biomed Anal 88:429–440. doi:10.1016/j.jpha.2013.09.015

    Article  CAS  Google Scholar 

  • Lamberth C (1999) Synthesis of 4-substituted imidazo[1,2-a]quinoxalines. J Prakt Chem 341(5):492–494. doi:10.1002/(SICI)1521-3897(199907)

    Article  CAS  Google Scholar 

  • Lee TD, Brown RE (1983) Imidazoquinoxaline compounds. EP Patent 0070518, 26 Jan 1983

    Google Scholar 

  • Lee TD, Brown RE (1984) Imidazoquinoxaline compounds. US Patent 4440929, 03 Apr 1984

    Google Scholar 

  • Lee SB, Park YI, Dong MS, Gong YD (2010) Identification of 2,3,6-trisubstituted quinoxaline derivatives as a Wnt2/β-catenin pathway inhibitor in non-small-cell lung cancer cell lines. Bioorg Med Chem Lett 20(19):5900–5904. doi:10.1016/j.bmcl.2010.07.088

    Article  CAS  Google Scholar 

  • Legroux D, Schoeni JP, Pont C, Fleury J-P (1987) Aza-2-dienes-1,3. Partie 5. Preparation de N-aminoimidazoles, 3H-pyrroles, triazolo[1,2,4][1,5-a]pyrazines et imidazo[1,2-a]pyrazines. Helv Chim Acta 70:187–195. doi:10.1002/hlca.19870700123

    Article  CAS  Google Scholar 

  • Li B, Cociorva OM, Nomanbhoy T, Weissig H, Li Q, Nakamura K, Liyanage M, Zhang MC, Shih AY, Aban A, Hu Y, Cajica J, Pham L, Kozarich JW, Shreder KR (2013) Hit-to-lead optimization and kinase selectivity of imidazo[1,2-a]quinoxalin-4-amine derived JNK1 inhibitors. Bioorg Med Chem Lett 23(18):5217–5222. doi:10.1016/j.bmcl.2013.06.087

    Article  CAS  Google Scholar 

  • Liu CH, Wang B, Li WZ, Yun LH, Liu Y, Su RB, Li J, Liu H (2004) Design, synthesis, and biological evaluation of novel 4-alkylamino-1-hydroxymethylimidazo[1,2-a]quinoxalines as adenosine A1 receptor antagonists. Bioorg Med Chem 12(17):4701–4707. doi:10.1016/j.bmc.2004.06.026

    Article  CAS  Google Scholar 

  • Luzzio FA (1998) Organic reactions, vol 53. American Chemical Society, New York, p 1

    Book  Google Scholar 

  • Malamas M, Ni Y, Erdei J, Egerland U, Langen B (2010) Substituted imidazo[1,5-a]quinoxalines as inhibitors of phosphodiesterase 10. WO Patent 2010/138833, 02 Dec 2010

    Google Scholar 

  • Malamas M, Ni Y, Erdei J, Fan K, Hoefgen N, Stange H, Schindler R, Grunwald C, Egerland U, Langen B, Hage T, Kronbach T, Grauer S, Harrison B, Robichaud A, Marquis K, Comery T, Pangalos M, Brandon N (2011a) Imidazo[1,5-a]quinoxalines as selective PDE10A inhibitors for the treatment of schizophrenia. In: Scientific abstracts for the 241st ACS national meeting and exposition, CA, Anaheim, 27–31 Mar 2011, MEDI 65

    Google Scholar 

  • Malamas MS, Ni Y, Erdei J, Stange H, Schindler R, Lankau HJ, Grunwald C, Fan KY, Parris K, Langen B, Egerland U, Hage T, Marquis KL, Grauer S, Brennan J, Navarra R, Graf R, Harrison BL, Robichaud A, Kronbach T, Pangalos MN, Hoefgen N, Brandon NJ (2011b) Highly potent, selective, and orally active phosphodiesterase 10A inhibitors. J Med Chem 54(21):7621–7638. doi:10.1021/jm2009138

    Article  CAS  Google Scholar 

  • Mamedov VA, Kalinin AA (2010) Pyrrolo[1,2-a]quinoxalines based on quinoxalines. Chem Heterocycl Compd 46(6):641–664. doi:10.1007/s10593-010-0565-3

    Article  CAS  Google Scholar 

  • Mamedov VA, Nuretdinov IA (1992) Reaction of methyl dichloroacetate with substituted benzaldehydes under the conditions of the Darzens condensation. Bull Rus Acad Sci Div Chem Sci 41(9):1690–1692. doi:10.1007/BF00863594

    Article  Google Scholar 

  • Mamedov VA, Nuretdinov IA, Sibgatullina FG (1990) Reactions of esters of 3-phenyl-3-chloro-2-oxopropionic acid with 2-aminopyridines and 2-aminoquinoline. Bull Rus Acad Sci Div Chem Sci 39(11):2380–2382. doi:10.1007/BF00958858

    Article  Google Scholar 

  • Mamedov VA, Kalinin AA, Gubaidullin AT, Litvinov IA, YaA Levin (2002a) α-Substituted 3-benzyl-1,2-dihydro-2-oxoquinoxalines in the Kornblum reaction. Synthesis and structure of 3-benzoyl-2-oxo-1,2-dihydroquinoxaline. Khim Geterotsikl Soedin 12:1704–1710

    Google Scholar 

  • Mamedov VA, Kalinin AA, Rizvanov IKh, Azancheev NM, YuYa Efremov, YaA Levin (2002b) Imidazo[1,5-a]- and thiazolo[3,4-a]-quinoxalines based on 3-(α-thiocyano-benzyl)quinoxalin-2(1H)-one. Chem Heterocycl Compd 38(9):1121–1129. doi:10.1023/A:1021269602024

    Article  CAS  Google Scholar 

  • Mamedov VA, Kalinin AA, Azancheev NM, Levin YaA (2003) Fused nitrogen-containing heterocycles: III. 4-Oxo-1-phenyl-4,5-dihydroimidazo[1,5-a]quinoxalines. A retrosynthetic approach. Russ J Org Chem 39(1):125–130. doi:10.1023/A:1023463117204

    Google Scholar 

  • Mamedov VA, Kalinin AA, Gorbunova EA, Baier I, Khabiker VD (2004) Fused polycyclic nitrogen-containing heterocycles: IX. Oxidative fusion of imidazole ring to 3-benzoylquinoxalin-2-ones. Russ. J Org Chem 40(7):1041–1046. doi:10.1023/B:RUJO.0000045201.90930.ff

    CAS  Google Scholar 

  • Mamedov VA, Kalinin AA, Balandina AA, Rizvanov IKh, Latypov SK (2009) An efficient method for the synthesis of imidazo[1,5-a]quinoxalines from 3-acylquinoxalinones and benzylamines via a novel imidazoannulation. Tetrahedron 65(45):9412–9420. doi:10.1016/j.tet.2009.08.081

    Article  CAS  Google Scholar 

  • Mamedov VA, Zhukova NA, Beschastnova TN, Gubaidullin AT, Rakov DV, Rizvanov IKh (2011) A simple and efficient method for the synthesis of highly substituted imidazoles using 3-aroylquinoxalin-2(1H)-ones. Tetrahedron Lett 52(33):4280–4284. doi:10.1016/j.tetlet.2011.06.014

    Article  CAS  Google Scholar 

  • McQuaid LA, Smith ECR, South KK, Mitch CH, Schoepp DD, True RA, Calligaro DO, O’Malley PJ, Lodge D, Ornstein PL (1992) Synthesis and excitatory amino acid pharmacology of a series of heterocyclic-fused quinoxalinones and quinazolinones. J Med Chem 35(18):3319–3324. doi:10.1021/jm00096a002

    Article  CAS  Google Scholar 

  • Mickelson JW, Jacobsen EJ, Carter DB, Im HK, Im WB, Schreur PJKD, Sethy VH, Tang AH, McGee JE, Petke JD (1996) High-affinity α-aminobutyric acid A/benzodiazepine ligands: synthesis and structure-activity relationship studies of a new series of tetracyclic imidazoquinoxalines. J Med Chem 39(23):4654–4666. doi:10.1021/jm960401i

    Article  CAS  Google Scholar 

  • Mishra A (2010) Batra S (2010) Expeditious synthesis of imidazole- and pyrrole-fused benzodiazocines. Eur J Org Chem 25:4832–4840. doi:10.1002/ejoc.201000355

    Article  CAS  Google Scholar 

  • Moarbess G, El-Hajj H, Kfoury Y, El-Sabban ME, Lepelletier Y, Hermine O, Deleuze-Masquéfa C, Bonnet PA, Bazarbachi A (2008a) EAPB0203, a member of the imidazoquinoxaline family, inhibits growth and induces caspase-dependent apoptosis in T-cell lymphomas and HTLV-I–associated adult T-cell leukemia/lymphoma. Blood 111(7):3770–3777. doi:10.1182/blood-2007-11-121913

    Article  CAS  Google Scholar 

  • Moarbess G, Deleuze-Masquéfa C, Bonnard V, Gayraud-Paniagua S, Vidal JR, Bressolle F, Pinguet F, Bonnet PA (2008b) In vitro and in vivo anti-tumoral activities of imidazo[1,2-a]quinoxaline, imidazo[1,5-a]quinoxaline, and pyrazolo[1,5-a]quinoxaline derivatives. Bioorg Med Chem 16(13):6601–6610. doi:10.1016/j.bmc.2008.05.022

    Article  CAS  Google Scholar 

  • Morjaria S, Deleuze-Masquéfa C, Lafont V, Gayraud S, Bompart J, Bonnet PA, Dornand J (2006) Impairment of TNF-α production and action by imidazo[1,2-a]quinoxalines, as derivative family which displays potential anti-inflammatory properties. Int J Immunol Pharm 19(3):525–538. doi:10.1177/039463200601900308

    CAS  Google Scholar 

  • Myers MR, He W, Hanney B, Setzer N, Maguire MP, Zulli A, Bilder G, Galzciniski H, Amin D, Needle S, Spada AP (2003) Potent quinoxaline-based inhibitors of PDGF receptor tyrosine kinase activity. Part 1: SAR exploration and effective bioisosteric replacement of a phenyl substituent. Bioorg Med Chem Lett 13(18):3091–3095. doi:10.1016/S0960-894X(03)00654-1

    Article  CAS  Google Scholar 

  • Nadler S, Qui Y, Townsend RM, Zusi FC (2002) Methods of treating inflammatory and immune diseases using inhibitors of IkB kinase (IKK). WO Patent 2002/060386, 08 Aug 2002

    Google Scholar 

  • Negwer M, Scharnow HG (2001) Organic chemical drugs and their synonyms, vols 2, 3. Wiley, Weinheim, p 869

    Google Scholar 

  • Nispen SPJM, Mensink C, Leusen AM (1980) Use of dilithio-tosylmethyl isocyanide in the synthesis of oxazoles and imidazoles. Tetrahedron Lett 21(38):3723–3726. doi:10.1016/S0040-4039(00)78757-0

    Article  Google Scholar 

  • Norris D, Chen P, Barrish JC, Jagabandhu D, Moquin R, Chen BC, Guo P (2001) Synthesis of imidazo[1,5-a]quinoxalin-4(5H)-one template via a novel intramolecular cyclization process. Tetrahedron Lett 42(26):4297–4299. doi:10.1016/S0040-4039(01)00698-0

    Article  CAS  Google Scholar 

  • Ohmori J, Shimizu-Sasamata M, Okada M, Sakamoto S (1997) 8-(1H-imidazol-1-yl)-7-nitro-4(5H)-imidazo[1,2-a]quinoxalinone and related compounds: synthesis and structure-activity relationships for the AMPA-type non-NMDA receptor. J Med Chem 40(13):2053–2063. doi:10.1021/jm960664c

    Article  CAS  Google Scholar 

  • Okada M, Sato S, Kawade K, Gotanda K, Shibo A, Nakana Y, Kobayashi H (2009) Quinoxaline derivatives, EP Patent 2103613, 23 Sep 2009

    Google Scholar 

  • Parra S, Laurent F, Subra G, Deleuze-Masquéfa C, Benezech V, Fabreguettes JR, Vidal JP, Pocock T, Elliot K, Escale R, Michel A, Chapat JP, Bonnet PA (2001) Imidazo[1,2-a]quinoxalines: synthesis and cyclic nucleotide phosphodiesterase inhibitory activity. Eur J Med Chem 36(3):255–264. doi:10.1016/S0223-5234(01)01213-2

    Article  CAS  Google Scholar 

  • Parthasarathy PC, Joshi BS, Chaphekar MR, Gawad DH, Anandan L, Likhate MA, Hendi M, Mudaliar S, Iyer S, Ray DK, Srivastava VB (1983) Heterocyclic N-oxides: part I–synthesis of 1,2-dihydroimidazo[1,2-a]quinoxaline 5-oxide & 2,3-dihydro-1H-pyrimido[1,2-a]quinoxaline 6-oxide & their antiprotozoal. Indian J Chem B 22:1250–1251

    Google Scholar 

  • Pierre F, Regan CF, Chevrel MC, Siddiqui-Jain A, Macalino D, Streiner N, Drygin D, Haddach M, O’Brien SE, Rice WG, Ryckman DM (2012) Novel potent dual inhibitors of CK2 and Pim kinases with antiproliferative activity against cancer cells. Bioorg Med Chem Lett 22(9):3327–3331. doi:10.1016/j.bmcl.2012.02.099

    Article  CAS  Google Scholar 

  • Poursattar A, Khalafy J, Prager RH (2012) A novel synthesis of imidazo[1,2-a]quinoxalines. Chem Heterocycl Compd 48(6):931–935. doi:10.1007/s10593-012-1079-y

    Article  CAS  Google Scholar 

  • Ramm PJ, Barnes AC (1980) Heterocyclic compounds. GB Patent 2027707, 27 Feb 1980

    Google Scholar 

  • Reeves JT, Fandrick DR, Tan Z, Song JJ, Lee H, Yee NK, Senanayake CH (2010) Copper-catalyzed annulation of 2-formylazoles with o-aminoiodoarenes. J Org Chem 75(3):992–994. doi:10.1021/jo9025644

    Article  CAS  Google Scholar 

  • Rudy H, Cramer KE (1939) Über den oxydativen Abbau des alloxan-2-dimethylatino anils zu 1-methyl benzimidazol. Chem Ber A 72(4):728–744

    Article  Google Scholar 

  • Sahasrabudhe K, Gracias V, Furness K, Smith BT, Katz CE, Reddy DS, Aube J (2003) Asymmetric Schmidt reaction of hydroxyalkyl azides with ketones. J Am Chem Soc 125(26):7914–7922. doi:10.1021/ja0348896

    Article  CAS  Google Scholar 

  • Sasmal PK, Majumdar R, Dighe RR, Chakravarty AR (2010) Photocytotoxicity and DNA cleavage activity of L-arg and L-lys Schiff base oxovanadium(IV) complexes having phenanthroline bases. Dalton Trans 39:7104–7113. doi:10.1039/C001867H

    Article  CAS  Google Scholar 

  • Schneidenbach D, Ammermann S, Debeaux M, Freund A, Zollner M, Daniliuc C, Jones P, Kowalsky W, Johannes HH (2010) Efficient and long-time stable red iridium(III) complexes for organic light-emitting diodes based on quinoxaline ligands. Inorg Chem 49(2):397–406. doi:10.1021/ic9009898

    Article  CAS  Google Scholar 

  • Scott TL, Söberberg BCG (2002) Novel palladium-catalyzed synthesis of 1,2-dihydro-4(3H)-carbazolones. Tetrahedron Lett 43(9):1621–1624. doi:10.1016/S0040-4039(02)00072-2

    Article  CAS  Google Scholar 

  • Seitz LE, Suling WJ, Reynolds RC (2002) Synthesis and antimycobacterial activity of pyrazine and quinoxaline derivatives. J Med Chem 45:5604–5606. doi:10.1021/jm020310n

    Article  CAS  Google Scholar 

  • Sessler JL, Maeda H, Mizuno T, Lynch VM, Furuta H (2002a) Quinoxaline-oligopyrroles: improved pyrrole-based anion receptors. Chem Commun 862–863. doi:10.1039/B111708D

  • Sessler JL, Maeda H, Mizuno T, Lynch VM, Furuta H (2002b) Quinoxaline-bridged porphyrinoids. J Am Chem Soc 124(45):13474–13479. doi:10.1021/ja0273750

    Article  CAS  Google Scholar 

  • Shaw K (1992) Certain imidazoquinoxalines; a new class of GABA Brain receptor ligands. WO Patent 92/07853, 14 May 1992

    Google Scholar 

  • Shaw K (1993a) Certain imidazoloquinosaline; a new class of GABA Brain receptor ligands. AU Patent 641851, 30 Sep 1993

    Google Scholar 

  • Shaw K (1993b) Method of obtaining novel 2-aryl-imidazolo[1,5-a]|quinoxsaline-1,3-(2H,5H) diones. PL Patent 294251, 18 Oct 1993

    Google Scholar 

  • Shaw K (1993c) Processo para preparar uma 2-aril-imidazo(1,5-a)quinoxalina-1,3(2H,5H)-diona. BR Patent 9201596, 03 Nov 1993

    Google Scholar 

  • Shaw K (1995) Imidazoquinoxalines. CZ Patent 280796, 18 Oct 1995

    Google Scholar 

  • Silvestri R, Pifferi A, Martino G, Massa S, Saturnino C, Artico M (2000) Reductive smiles rearrangement of 1-[(5-chloro-2-nitrophenyl)sulfonyl]-1H-pyrrole-2-carbohydrazide to 1-amino-6-chloro-2-(1H-pyrrol-2-yl)benzimidazole. Heterocycles 53(10):2163–2174. doi:10.3987/COM-00-8970

    Article  CAS  Google Scholar 

  • Simonov AM, Uryukina IG (1971) Synthesis of imidazo[1,2-a]quinoxaline. Chem Heterocycl Compd 7(4):536. doi:10.1007/BF00471508

    Article  Google Scholar 

  • Simonov M, Uryukina IG, Pozharskii AF (1972) Imidazo[1,2-a]quinoxaline and its transformations I. Chem Heterocycl Compd 8(3):380–382. doi:10.1007/BF00475308

    Google Scholar 

  • Spatz JH, Umkehrer M, Kalinski C, Ross G, Burdack C, Kolb J, Bach T (2007) Combinatorial synthesis of 4-oxo-4H-imidazo[1,5-a]quinoxalines and 4-oxo-4H-pyrazolo[1,5-a]quinoxalines. Tetrahedron Lett 48(45):8060–8064. doi:10.1016/j.tetlet.2007.09.015

    Article  CAS  Google Scholar 

  • Srinivas C, Kumar CNSP, Rao VJ, Palaniappan S (2007) Efficient, convenient and reusable polyaniline-sulfate salt catalyst for the synthesis of quinoxaline derivatives. J Mol Catal A: Chem 265(1–2):227–230. doi:10.1016/j.molcata.2006.10.018

    Article  CAS  Google Scholar 

  • Strauss MJ, Palmer DC, Bard RR (1978) Annulations of amidines on halonitroaromatics. A one-step route to quinoxaline and imidazoquinoxaline-N-oxides and related structures. J Org Chem 43(10):2041–2044. doi:10.1021/jo00404a044

    Article  CAS  Google Scholar 

  • Sundaram GSM, Singh B, Venkatesh C, Ila H, Junjappa H (2007) Dipolar cycloaddition of ethyl isocyanoacetate to 3-chloro-2-(methylthio)/2-(methylsulfonyl)quinoxalines: highly regio- and chemoselective synthesis of substituted imidazo[1,5-a]quinoxaline-3-carboxylates. J Org Chem 72(13):5020–5023. doi:10.1021/jo070590k

    Article  CAS  Google Scholar 

  • TenBrink RE, Jacobsen EJ, Gammil RB (1992) Imidazo[1,5-a]quinoxalines. WO Patent 92/22552, 01 Jun 1992

    Google Scholar 

  • TenBrink RE, Jacobsen EJ, Hester JB, Skaletzky LL (1993) 3-Substituted imidazo[1,5-a]quinoxalines and quinazolines with CNS activity. WO Patent 93/17025, 02 Sep 1993

    Google Scholar 

  • TenBrink RE, Im WB, Sethy VH, Tang AH, Carter DB (1994) Antagonist, partial agonist, and full agonist imidazo[1,5-a]quinoxaline amides and carbamates acting through the GABAA/benzodiazepine receptor. J Med Chem 37(6):758–768. doi:10.1021/jm00032a008

    Article  CAS  Google Scholar 

  • TenBrink RE, Jacobsen EJ, Gammil RB (1996) Imidazo[1,5-a]quinoxalines. US Patent 5541324, 30 Jul 1996

    Google Scholar 

  • Teranishi K (2007) Imidazoquinoxalinone chemical luminescent substance, method for producing the same and emission spectrometry method. JP Patent 2007254352, 04 Oct 2007

    Google Scholar 

  • Treiber HJ, Lubisch W, Behl B (1996) Hofmann HP (1996) Neue heterocyclische substituierte Imidazolo-chinoxalinone, ihre Herstellung und Verwendung. DE Patent 19503825:04

    Google Scholar 

  • Treiber HJ, Lubisch W, Hofmann HP (1997) Novel heterocyclically substituted imidazoloquinoxalinones, their preparation and their use. WO Patent 97/34896, 25 Sept 1997

    Google Scholar 

  • Tsuji R, Nakagawa M, Nishida A (2003) An efficient synthetic approach to optically active β-carboline derivatives via Pictet-Spengler reaction promoted by trimethylchlorosilane. Tetrahedron Asymmetry 14(2):177–180. doi:10.1016/S0957-4166(02)00793-0

    Article  CAS  Google Scholar 

  • Uryukina IG, Simonov AM, Ovchinnikova RA (1972) Imidazo[1,2-a]quinoxaline and its transformations II. 7-Substituted imidazo[1,2-a]quinoxaline. Chem Heterocycl Compd 8(11):1408–1410. doi:10.1007/BF00471885

    Google Scholar 

  • Van Leusen D, Van Leusen AM (2012) Synthetic uses of tosylmethyl isocyanide (TOSMIC). In: Overman LE (ed) Organic Reactions. Wiley, Hoboken, NJ, p 417

    Google Scholar 

  • Varano F, Catarzi D, Colotta V, Cecchi L, Filacchioni G, Galli A, Costagli C (2001) Synthesis of a set of ethyl 1-carbamoyl-3-oxoquinoxaline-2-carboxylates and of their constrained analogue imidazo[1,5-a]quinoxaline-1,3,4-triones as glycine/NMDA receptor antagonists. Eur J Med Chem 36(2):203–209. doi:10.1016/S0223-5234(00)01203-4

    Article  CAS  Google Scholar 

  • Verma AK, Jha RR, Sankar VK, Singh RP (2013) Selective synthesis of 4,5-dihydroimidazo- and imidazo[1,5-a]quinoxalines via modified Pictet-Spengler reaction. Tetrahedron Lett 54(45):5984–5990. doi:10.1016/j.tetlet.2013.08.052

    Article  CAS  Google Scholar 

  • Waetjen F (1987) Heterocyclic compounds and their preparation and use. ZA Patent 8701534 28 Oct 1987

    Google Scholar 

  • Waetjen F (1988) Hansen HC (1988) Heterocyclic compounds and their prepapation and use. EP Patent 0283162:21

    Google Scholar 

  • Waetjen F, Hansen HC (1990) Imidazoquinoxalines and their prepapation EP Patent 0368652, 16 May 1990

    Google Scholar 

  • Waetjen F, Hansen HC (1991) Imidazoquinoxaline compounds and their prepapation and use. WO Patent 91/07407, 30 May 1991

    Google Scholar 

  • Wang Q, Zhang S, Guo F, Zhang B, Hu P, Wang Z (2012) Natural α-amino acids applied in the synthesis of imidazo[1,5-a]N-heterocycles under mild conditions. J Org Chem 77(24):11161–11166. doi:10.1021/jo302299u

    Article  CAS  Google Scholar 

  • Warner PL, Luber E (1979a) 1-(2-Phenylreylene)imidazoles. US Patent 4160097, 03 Jul 1979

    Google Scholar 

  • Warner PL, Luber E (1979b) 1-(2-Acylaminophenyl)imidazoles. US Patent 4172947, 30 Oct 1979

    Google Scholar 

  • Warner PL, Luber E (1979c) 4-Substituierte imidazo eckige klammer auf 1,2-a eckige klammer zu -chinoxaline, zwischenprodukte, verfahren zu deren herstellung und diese enthaltende mittel. DE Patent 2800480, 13 Jul 1978

    Google Scholar 

  • Warner PL, Luber E (1980a) Treatment of inflammatory disorders with 4-trifluoromethylimidazo[1,2-a]quinoxaline. US Patent 4229452, 21 Oct 1980

    Google Scholar 

  • Warner PL, Luber E (1980b) Method for treating fungal infection in mammals with imidazo[1,2-a]quinoxalines. US Patent 4191767, 04 Mar 1980

    Google Scholar 

  • Warner PL, Luber E (1980c) 4-Substituted imidazo[1,2-a]quinoxalines. US Patent 4200750, 29 Apr 1980

    Google Scholar 

  • Warner PL, Luber E (1980d) Method for reducing immunological response. US Patent 4191766, 04 Mar 1980

    Google Scholar 

  • Warner PL, Luber E (1980e) Process for preparing 4-substituted imidazo[1,2-a]quinoxalines. US Patent 4198508, 15 Apr 1980

    Google Scholar 

  • Zarrouk A, Dafali A, Hammouti B, Zarrok H, Boukhris S, Zertoubi M (2010) Synthesis, characterization and comparative study of functionalized quinoxaline derivatives towards corrosion of copper in nitric acid medium. Int J Electrochem Sci 5(1):46–55

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vakhid A. Mamedov .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mamedov, V.A. (2016). Synthesis of Imidazo[1,5-a]- and Imidazo[1,2-a]quinoxalines. In: Quinoxalines. Springer, Cham. https://doi.org/10.1007/978-3-319-29773-6_4

Download citation

Publish with us

Policies and ethics