Skip to main content

Instantaneous Frequency and Damping from Transient Ring-Down Data

  • Conference paper
  • First Online:
Dynamics of Coupled Structures, Volume 4

Abstract

Broadband impact excitation in structural dynamics is a common technique used to detect and characterize nonlinearities in mechanical systems since it excites many frequencies of a structure at once. Non-stationary time signals from transient ring-down measurements require time-frequency analysis tools to observe variations in frequency and energy dissipation as the response evolves. This work uses the short-time Fourier transform to estimate the instantaneous parameters from measured or simulated data. By combining the discrete Fourier transform with an expanding or contracting window function that moves along the time axis, the resulting spectra are used to estimate the instantaneous frequencies, damping ratios and complex Fourier coefficients. This method is demonstrated on a multi-degree-of-freedom beam with a cubic spring attachment. The amplitude-frequency dependence in the damped response is compared to the undamped nonlinear normal modes. A second example shows the results from experimental ring-down measurements taken on a beam with a lap joint, revealing how the mechanical interface introduces nonlinear frequency and damping parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  2. Neild, S.A., McFadden, P.D., Williams, M.S.: A review of time-frequency methods for structural vibration analysis. Eng. Struct. 25, 713–728 (2003)

    Article  Google Scholar 

  3. Feldman, M.: Non-linear system vibration analysis using Hilbert transform–I. Free vibration analysis method ‘Freevib’. Mech. Syst. Signal Process. 8, 119–127 (1994)

    Article  Google Scholar 

  4. Sumali, H., Kellogg, R.A.: Calculating damping from ring-down using Hilbert transform and curve fitting. Presented at the 4th International Operational Modal Analysis Conference (IOMAC), Istanbul, Turkey, May 2011

    Google Scholar 

  5. Sracic, M.W., Allen, M.S., Sumali, H.: Identifying the modal properties of nonlinear structures using measured free response time histories from a scanning laser Doppler vibrometer. In: Topics in Nonlinear Dynamics, Conference Proceedings of the Society for Experimental Mechanics Series, vol. 3, pp. 269–286. Springer (2012)

    Google Scholar 

  6. Deaner, B.J., Allen, M.S., Starr, M.J., Segalman, D.J., Sumali, H.: Application of viscous and Iwan modal damping models to experimental measurements from bolted structures. J. Vib. Acoust. 137, 021012 (2015)

    Article  Google Scholar 

  7. Londoño, J.M., Neild, S.A., Cooper, J.E.: Identification of backbone curves of nonlinear systems from resonance decay responses. J. Sound Vib. 348, 224–238 (2015)

    Article  Google Scholar 

  8. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., et al.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, pp. 903–995. (1998)

    Google Scholar 

  9. Eriten, M., Kurt, M., Luo, G., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Nonlinear system identification of frictional effects in a beam with a bolted joint connection. Mech. Syst. Signal Process. 39, 245–264 (2013)

    Article  Google Scholar 

  10. Lee, Y., Vakakis, A., McFarland, D., Bergman, L.: A global–local approach to nonlinear system identification: a review. Struct. Control Health Monit. 17, 742–760 (2010)

    Article  Google Scholar 

  11. Vakakis, A., Bergman, L., McFarland, D., Lee, Y., Kurt, M.: Current efforts towards a non-linear system identification methodology of broad applicability. In: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2011

    Google Scholar 

  12. Kurt, M., Eriten, M., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Methodology for model updating of mechanical components with local nonlinearities. J. Sound Vib. 357, 331–348 (2015)

    Article  Google Scholar 

  13. Kerschen, G., Peeters, M., Golinval, J.C., Vakakis, A.F.: Nonlinear normal modes. Part I. A useful framework for the structural dynamicist. Mech. Syst. Signal Process. 23, 170–194 (2009)

    Article  Google Scholar 

  14. Vakakis, A.F.: Non-linear normal modes (NNMs) and their applications in vibration theory: an overview. Mech. Syst. Signal Process. 11, 3–22 (1997)

    Article  Google Scholar 

  15. Panagopoulos, P., Georgiades, F., Tsakirtzis, S., Vakakis, A.F., Bergman, L.A.: Multi-scaled analysis of the damped dynamics of an elastic rod with an essentially nonlinear end attachment. Int. J. Solids Struct. 44, 6256–6278 (2007)

    Article  MATH  Google Scholar 

  16. Peeters, M., Kerschen, G., Golinval, J.C.: Dynamic testing of nonlinear vibrating structures using nonlinear normal modes. J. Sound Vib. 330, 486–509 (2011)

    Article  Google Scholar 

  17. Peeters, M., Kerschen, G., Golinval, J.C.: Modal testing of nonlinear vibrating structures based on nonlinear normal modes: experimental demonstration. Mech. Syst. Signal Process. 25, 1227–1247 (2011)

    Article  Google Scholar 

  18. Ardeh, H., Allen, M.: Investigating cases of jump phenomenon in a nonlinear oscillatory system. In: Topics in Nonlinear Dynamics, Conference Proceedings of the Society for Experimental Mechanics Series, vol. 1, pp. 299–318. Springer, New York, 2013

    Google Scholar 

  19. Kuether, R.J., Renson, L., Detroux, T., Grappasonni, C., Kerschen, G., Allen, M.S.: Nonlinear normal modes, modal interactions and isolated resonance curves. J. Sound Vib. 351, 299–310 (2015)

    Article  Google Scholar 

  20. Peeters, M., Viguié, R., Sérandour, G., Kerschen, G., Golinval, J.C.: Nonlinear normal modes, Part II: toward a practical computation using numerical continuation techniques. Mech. Syst. Signal Process. 23, 195–216 (2009)

    Article  Google Scholar 

  21. Shaw, S.W., Pierre, C.: Normal modes for non-linear vibratory systems. J. Sound Vib. 164, 85–124 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ehrhardt, D., Harris, R., Allen, M.: Numerical and experimental determination of nonlinear normal modes of a circular perforated plate. In: Topics in Modal Analysis I, Conference Proceedings of the Society for Experimental Mechanics, vol. 7, pp. 239–251. Series Springer International Publishing, 2014

    Google Scholar 

  23. Ardeh, H.A.: Geometrical theory of nonlinear modal analysis. Ph.D Dissertation, University of Wisconsin-Madison (2014)

    Google Scholar 

  24. Brake, M., Reuss, P., Segalman, D., Gaul, L.: Variability and repeatability of jointed structures with frictional interfaces. In: Dynamics of Coupled Structures, Conference Proceedings of the Society for Experimental Mechanics Series, vol. 1, pp. 245–252. Springer International Publishing (2014)

    Google Scholar 

  25. Smith, S., Bilbao-Ludena, J.C., Catalfamo, S., Brake, M.R.W., Reuß, P., Schwingshackl, C.W.: The effects of boundary conditions, measurement techniques, and excitation type on measurements of the properties of mechanical joints. In: Nonlinear Dynamics, Conference Proceedings of the Society for Experimental Mechanics Series, vol. 1, pp. 415–431. Springer International Publishing (2016)

    Google Scholar 

  26. Bonney, M., Robertson, B., Schempp, F., Brake, M.R.W., Mignolet, M.: experimental determination of frictional interface models. Presented at the 34th International Modal Analysis Conference (IMAC XXXIV), Orlando, 2016

    Google Scholar 

  27. Catalfamo, S., Smith, S.A., Morlock, F., Brake, M.R.W., Reuß, P., Schwingshackl, C.W., et al.: Effects of experimental methods on the measurements of a nonlinear structure. Presented at the 34th International Modal Analysis Conference (IMAC XXXIV), Orlando, 2016

    Google Scholar 

  28. Salles, L., Swacek, C., Lacayo, R.M., Reuss, P., Brake, M.R.W., Schwingshackl, C.W.: Numerical round robin for prediction of dissipation in lap joints. In: Nonlinear Dynamics, Conference Proceedings of the Society for Experimental Mechanics Series, vol. 1, pp. 53–64. Springer International Publishing (2016)

    Google Scholar 

  29. Gross, J., Armand, J., Lacayo, R.M., Reuß, P., Salles, L., Schwingshackl, C.W., et al.: A numerical round robin for the prediction of the dynamics of jointed structures. Presented at the 34th International Modal Analysis Conference (IMAC XXXIV), Orlando, 2016

    Google Scholar 

Download references

Acknowledgements

This work was funded by Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors would also like to thank Matt Bonney, Brett Robertson and Fabian Schempp for sharing the experimental data they collected on the lap joint presented in Sect. 24.4. Finally, the authors would like to thank Scott Smith and Caroline Nielsen for their help developing the algorithm in Matlab and working on a graphical user interface.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Kuether .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Kuether, R.J., Brake, M.R.W. (2016). Instantaneous Frequency and Damping from Transient Ring-Down Data. In: Allen, M., Mayes, R., Rixen, D. (eds) Dynamics of Coupled Structures, Volume 4. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-29763-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29763-7_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29762-0

  • Online ISBN: 978-3-319-29763-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics