Skip to main content

Considerations on the Thermophysical Properties of Nanofluids

  • Chapter
  • First Online:
Engineering Applications of Nanotechnology

Abstract

The properties such as viscosity, thermal conductivity, specific heat, and density of nanofluids have been determined by various investigators through experiments. An equation developed for specific heat and density employing the law of mixtures is observed to be valid when compared with the experimental data. However, the experimental data of viscosity and thermal conductivity reported by investigators are observed to vary by more than 25 % for certain nanofluids. Theoretical models for the estimation of properties are yet to be developed. The nanofluid properties are essential for the comparison of heat transfer enhancement capabilities. Equations are developed for the estimation of viscosity and thermal conductivity by Corcione and Sharma et al. These equations are flexible to determine the nanofluid properties for a wide range of operating parameters which can predict the experimental data of water-based nanofluids with a maximum deviation of 12 %.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

C :

Specific heat at constant pressure, J/(K kg)

C RM :

Random motion velocity of nanoparticles, m/s

D :

Diameter, nm

HR:

Non-dimensional heat capacity ratio \([\left( {\rho C} \right)_{p} /\left( {\rho C} \right)_{\text{nf}} ]\)

H :

Interparticle spacing

K :

Thermal conductivity, J/(K m)

\(k_{\text{B}}\) :

Boltzmann constant, \(1.3807 \, \times \,10^{ - 23} \,{\text{J}}/{\text{K}}\)

\(k_{\text{pe}}\) :

Equivalent thermal conductivity

L :

Molecular weight of the base fluid

N :

Avogadro’s number

N :

Empirical shape factor ‘n’ is equal to \(3/\psi\)

Pr :

Prandtl number

R :

Thermal resistance (K m2)/W

\(R_{\text{b}}\) :

Interfacial thermal resistance between nanoparticle and the fluid

Re :

Reynolds number

\(r_{\text{m}}\) :

Radius of the liquid species

\(r_{\text{p}}\) :

Radius of the suspended particles

T :

Thickness, m

T :

Temperature, K or °C

\(\alpha\) :

Thermal diffusivity, \([k/\rho C]\;({\text{m}}^{2} /{\text{s}})\)

\(\beta\) :

Ratio of nanolayer thickness to the particle radius

\(\omega\) :

\(= \left[ {\frac{{d_{\text{p}} }}{{\left( {d_{\text{p}} + 2t} \right)}}} \right]^{3}\)

\(\varnothing\) :

Volume fraction of nanoparticles in per cent

\(\phi_{\text{m}}\) :

Maximum packing fraction

\(\gamma\) :

Ratio of thermal conductivity of the layer to that of the particle

\(\mu\) :

Absolute viscosity, kg/(m s)

\(\mu_{\text{r}}\) :

Relative viscosity of the suspension

\(\vartheta\) :

Kinematic viscosity (m2/s)

\(\rho\) :

Density (kg/m3)

\(\rho_{{{\text{bf}}0}}\) :

Mass density of the base fluid calculated at 20 °C

\({\text{fr}}\) :

Freezing point of the base liquid

\(\eta\) :

Intrinsic viscosity

\(\psi\) :

Sphericity

bf:

Base fluid

eff:

Effective

i:

Interface

nf:

Nanofluid

neff:

Net effective

w:

Water

p:

Nanoparticle

References

  • ASHRAE, A. (2005). Handbook of fundamentals. Atlanta, GA: American Society of Heating Refrigerating and Air Conditioning Engineers.

    Google Scholar 

  • Barbés, B., Páramo, R., Blanco, E., Pastoriza-Gallego, M. J., Piñeiro, M. M., Legido, J. L., et al. (2013). Thermal conductivity and specific heat capacity measurements of Al2O3 nanofluids. Journal of Thermal Analysis and Calorimetry, 111(2), 1615–1625.

    Article  Google Scholar 

  • Batchelor, G. K. (1977). Effect of Brownian-motion on bulk stress in a suspension of spherical-particles. Journal of Fluid Mechanics, 83(1), 97–117.

    Article  MathSciNet  Google Scholar 

  • Beck, M. P., Yuan, Y., Warrier, P., & Teja, A. S. (2009). The effect of particle size on the thermal conductivity of alumina nanofluids. Journal of Nanoparticle Research, 11(5), 1129–1136.

    Article  Google Scholar 

  • Beck, M. P., Yuan, Y., Warrier, P., & Teja, A. S. (2010). The thermal conductivity of alumina nanofluids in water, ethylene glycol, and ethylene glycol + water mixtures. Journal of Nanoparticle Research, 12(4), 1469–1477.

    Article  Google Scholar 

  • Branson, B. T., Beauchamp, P. S., Beam, J. C., Lukehart, C. M., & Davidson, J. L. (2013). Nanodiamond nanofluids for enhanced thermal conductivity. ACS Nano, 7(4), 3183–3189.

    Article  Google Scholar 

  • Brinkman, H. C. (1952). The viscosity of concentrated suspensions and solutions. Journal of Chemical Physics, 20(4), 571–581.

    Article  Google Scholar 

  • Bruggeman, D. A. G. (1935). Berechnung verschiedener physikalischer konstanten von heterogenen substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der mischkörper aus isotropen substanzen. Annalen der Physik, 24, 636–679.

    Article  Google Scholar 

  • Buongiorno, J., Venerus, D. C., Prabhat, N., McKrell, T., Townsend, J., Christianson, R., et al. (2009). A benchmark study on the thermal conductivity of nanofluids. Journal of Applied Physics, 106(9), 094312.

    Article  Google Scholar 

  • Chen, H., Ding, Y., He, Y., & Tan, C. (2007). Rheological behaviour of ethylene glycol based titania nanofluids. Chemical Physics Letters, 444(4–6), 333–337.

    Article  Google Scholar 

  • Chon, C. H., Kihm, K. D., Lee, S. P., & Choi, S. U. (2005) Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Applied Physics Letters, 87(15), 153107–153107–3.

    Google Scholar 

  • Corcione, M. (2011). Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Conversion and Management, 52(1), 789–793.

    Article  Google Scholar 

  • Das, S. K., Choi, S. U., & Patel, H. E. (2006). Heat transfer in nanofluids—A review. Heat Transfer Engineering, 27(10), 3–19.

    Article  Google Scholar 

  • Das, S. K., Putra, N., Thiesen, P., & Roetzel, W. (2003). Temperature dependence of thermal conductivity enhancement for nanofluids. Journal of Heat Transfer, 125(4), 567–574.

    Article  Google Scholar 

  • De Noni Jr, A., Garcia, D. E., & Hotza, D. (2002). A modified model for the viscosity of ceramic suspensions. Ceramics International, 28(7), 731–735.

    Article  Google Scholar 

  • Duangthongsuk, W., & Wongwises, S. (2009). Measurement of temperature-dependent thermal conductivity and viscosity of TiO2–water nanofluids. Experimental Thermal and Fluid Science, 33(4), 706–714.

    Article  Google Scholar 

  • Eastman, J., Choi, S., Li, S., Yu, W., & Thompson, L. (2001). Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters, 78(6), 718–720.

    Article  Google Scholar 

  • Every, A., Tzou, Y., Hasselman, D., & Raj, R. (1992). The effect of particle size on the thermal conductivity of ZnS/diamond composites. Acta Metallurgica et Materialia, 40(1), 123–129.

    Article  Google Scholar 

  • Feng, Y., Yu, B., Feng, K., Xu, P., & Zou, M. (2008). Thermal conductivity of nanofluids and size distribution of nanoparticles by Monte Carlo simulations. Journal of Nanoparticle Research, 10(8), 1319–1328.

    Article  Google Scholar 

  • Frankel, N. A., & Acrivos, A. (1967). On the viscosity of a concentrated suspension of solid spheres. Chemical Engineering Science, 22(6), 847–853.

    Article  Google Scholar 

  • Fullman, R. (1953). Measurement of particle sizes in opaque bodies. General Electric Research Laboratory.

    Google Scholar 

  • Garg, J., Poudel, B., Chiesa, M., Gordon, J., Ma, J., Wang, J., et al. (2008). Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid. Journal of Applied Physics, 103(7), 074301.

    Article  Google Scholar 

  • Ghadimi, A., Saidur, R., & Metselaar, H. (2011). A review of nanofluid stability properties and characterization in stationary conditions. International Journal of Heat and Mass Transfer, 54(17), 4051–4068.

    Article  Google Scholar 

  • Godson, L., Raja, B., Lal, D. M., & Wongwises, S. (2010). Experimental investigation on the thermal conductivity and viscosity of silver-deionized water nanofluid. Experimental Heat Transfer, 23(4), 317–332.

    Article  Google Scholar 

  • Graham, A. L. (1981). On the viscosity of suspensions of solid spheres. Applied Scientific Research, 37(3), 275–286.

    Article  MATH  Google Scholar 

  • Hagen, K. D. (1999). Heat transfer with applications. : Prentice Hall.

    Google Scholar 

  • Hamilton, R. L., & Crosser, O. K. (1962). Thermal conductivity of heterogeneous two-component systems. Industrial and Engineering Chemistry Fundamentals, 1(3), 182–191.

    Article  Google Scholar 

  • He, Y., Jin, Y., Chen, H., Ding, Y., Cang, D., & Lu, H. (2007). Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. International Journal of Heat and Mass Transfer, 50(11), 2272–2281.

    Article  MATH  Google Scholar 

  • Hwang, Y., Lee, J. K., Lee, C. H., Jung, Y. M., Cheong, S. I., Lee, C. G., et al. (2007). Stability and thermal conductivity characteristics of nanofluids. Thermochimica Acta, 455(1–2), 70–74.

    Article  Google Scholar 

  • Jang, S. P., & Choi, S. U. (2004). Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Applied Physics Letters, 84(21), 4316–4318.

    Article  Google Scholar 

  • Jang, S. P., & Choi, S. U. (2007). Effects of various parameters on nanofluid thermal conductivity. Journal of Heat Transfer, 129(5), 617–623.

    Article  Google Scholar 

  • Kakaç, S., & Pramuanjaroenkij, A. (2009). Review of convective heat transfer enhancement with nanofluids. International Journal of Heat and Mass Transfer, 52(13–14), 3187–3196.

    Article  MATH  Google Scholar 

  • Karthikeyan, N. R., Philip, J., & Raj, B. (2008). Effect of clustering on the thermal conductivity of nanofluids. Materials Chemistry and Physics, 109(1), 50–55.

    Article  Google Scholar 

  • Kazemi-Beydokhti, A., Heris, S. Z., Moghadam, N., Shariati-Niasar, M., & Hamidi, A. A. (2014). Experimental investigation of parameters affecting nanofluid effective thermal conductivity. Chemical Engineering Communications, 201(5), 593–611.

    Article  Google Scholar 

  • Keblinski, P., Phillpot, S. R., Choi, S. U. S., & Eastman, J. A. (2002). Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). International Journal of Heat and Mass Transfer, 45(4), 855–863.

    Article  MATH  Google Scholar 

  • Khanafer, K., & Vafai, K. (2011). A critical synthesis of thermophysical characteristics of nanofluids. International Journal of Heat and Mass Transfer, 54(19), 4410–4428.

    Article  MATH  Google Scholar 

  • Kim, S. H., Choi, S. R., & Kim, D. (2007). Thermal conductivity of metal-oxide nanofluids: Particle size dependence and effect of laser irradiation. Journal of Heat Transfer, 129(3), 298–307.

    Article  Google Scholar 

  • Kitano, T., Kataoka, T., & Shirota, T. (1981). An empirical equation of the relative viscosity of polymer melts filled with various inorganic fillers. Rheologica Acta, 20(2), 207–209.

    Article  Google Scholar 

  • Kleinstreuer, C., & Feng, Y. (2011). Experimental and theoretical studies of nanofluid thermal conductivity enhancement: A review. Nanoscale Research Letters, 6(1), 439.

    Article  Google Scholar 

  • Kole, M., & Dey, T. K. (2010). Thermal conductivity and viscosity of Al2O3 nanofluid based on car engine coolant. Journal of Physics. D. Applied Physics, 43, 315501.

    Article  Google Scholar 

  • Koo, J., & Kleinstreuer, C. (2004). A new thermal conductivity model for nanofluids. Journal of Nanoparticle Research, 6(6), 577–588.

    Article  Google Scholar 

  • Koo, J., & Kleinstreuer, C. (2005). Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids. International Communications in Heat and Mass Transfer, 32(9), 1111–1118.

    Article  Google Scholar 

  • Krieger, I. M., & Dougherty, T. J. (1959). A mechanism for non-newtonian flow in suspensions of rigid spheres. Transactions of The Society of Rheology, 3(1), 137–152.

    Article  MATH  Google Scholar 

  • Kulkarni, D. P., Das, D. K., & Chukwu, G. A. (2006). Temperature dependent rheological property of copper oxide nanoparticles suspension (nanofluid). Journal of Nanoscience and Nanotechnology, 6(4), 1150–1154.

    Article  Google Scholar 

  • Kulkarni, D. P., Das, D. K., & Patil, S. L. (2007). Effect of temperature on rheological properties of copper oxide nanoparticles dispersed in propylene glycol and water mixture. Journal of Nanoscience and Nanotechnology, 7(7), 2318–2322.

    Article  Google Scholar 

  • Kulkarni, D. P., Namburu, P. K., Ed Bargar, H., & Das, D. K. (2008). Convective heat transfer and fluid dynamic characteristics of SiO2 ethylene glycol/water nanofluid. Heat Transfer Engineering, 29(12), 1027–1035.

    Article  Google Scholar 

  • Lee, J.-H., Hwang, K. S., Jang, S. P., Lee, B. H., Kim, J. H., Choi, S. U. S., et al. (2008). Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. International Journal of Heat and Mass Transfer, 51(11–12), 2651–2656.

    Article  Google Scholar 

  • Lee, J.-H., Lee, S.-H., Choi, C. J., Jang, S. P., & Choi, S. U. (2010). A review of thermal conductivity data, mechanisms and models for nanofluids. International Journal of Micro-Nano Scale Transport, 1(4), 269–322.

    Article  Google Scholar 

  • Lee, S., Choi, S.-S., Li, S., & Eastman, J. (1999). Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer, 121(2), 280–289.

    Article  Google Scholar 

  • Leong, K. C., Yang, C., & Murshed, S. M. S. (2006). A model for the thermal conductivity of nanofluids—The effect of interfacial layer. Journal of Nanoparticle Research, 8(2), 245–254.

    Article  Google Scholar 

  • Li, C. H., & Peterson, G. (2006). Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). Journal of Applied Physics, 99(8), 084314.

    Article  Google Scholar 

  • Li, J., Li, Z., & Wang, B. (2002). Experimental viscosity measurements for copper oxide nanoparticle suspensions. Tsinghua Science and Technology, 7(2), 198–201.

    Google Scholar 

  • Li, X. F., Zhu, D. S., Wang, X. J., Wang, N., Gao, J. W., & Li, H. (2008). Thermal conductivity enhancement dependent pH and chemical surfactant for Cu–H2O nanofluids. Thermochimica Acta, 469(1–2), 98–103.

    Article  Google Scholar 

  • Lundgren, T. S. (1972). Slow flow through stationary random beds and suspensions of spheres. Journal of Fluid Mechanics, 51(02), 273–299.

    Article  MATH  Google Scholar 

  • Mahbubul, I., Saidur, R., & Amalina, M. (2012). Latest developments on the viscosity of nanofluids. International Journal of Heat and Mass Transfer, 55(4), 874–885.

    Article  Google Scholar 

  • Mahian, O., Kianifar, A., & Wongwises, S. (2013). Dispersion of ZnO nanoparticles in a mixture of ethylene glycol–water, exploration of temperature-dependent density, and sensitivity analysis. Journal of Cluster Science, 24(4), 1103–1114.

    Article  Google Scholar 

  • Mariano, A., Pastoriza-Gallego, M. J., Lugo, L., Camacho, A., Canzonieri, S., & Piñeiro, M. M. (2013). Thermal conductivity, rheological behaviour and density of non-Newtonian ethylene glycol-based SnO2 nanofluids. Fluid Phase Equilibria, 337, 119–124.

    Article  Google Scholar 

  • Masuda, H., Ebata, A., Teramae, K., & Hishinuma, N. (1993). Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Netsu Bussei, 7(4), 227–233.

    Article  Google Scholar 

  • Maxwell, J.C. (1881). Treatise on electricity and magnetism (2nd ed.). Oxford, UK: Clarendon Press.

    Google Scholar 

  • Mintsa, H. A., Roy, G., Nguyen, C. T., & Doucet, D. (2009). New temperature dependent thermal conductivity data for water-based nanofluids. International Journal of Thermal Sciences, 48(2), 363–371.

    Article  Google Scholar 

  • Mishra, P. C., Mukherjee, S., Nayak, S. K., & Panda, A. (2014). A brief review on viscosity of nanofluids. International Nano Letters, 4(4), 109–120.

    Article  Google Scholar 

  • Murshed, S. M. S. (2011a). Simultaneous measurement of thermal conductivity, thermal diffusivity, and specific heat of nanofluids. Heat Transfer Engineering, 33(8), 722–731.

    Article  Google Scholar 

  • Murshed, S. M. S., Leong, K. C., & Yang, C. (2005). Enhanced thermal conductivity of TiO2–water based nanofluids. International Journal of Thermal Sciences, 44(4), 367–373.

    Article  Google Scholar 

  • Murshed, S. M. S., Leong, K. C., & Yang, C. (2008). Investigations of thermal conductivity and viscosity of nanofluids. International Journal of Thermal Sciences, 47(5), 560–568.

    Article  Google Scholar 

  • Murshed, S. M. S., Leong, K. C., & Yang, C. (2009). A combined model for the effective thermal conductivity of nanofluids. Applied Thermal Engineering, 29(11–12), 2477–2483.

    Article  Google Scholar 

  • Murshed, S. S. (2011b). Determination of effective specific heat of nanofluids. Journal of Experimental Nanoscience, 6(5), 539–546.

    Article  Google Scholar 

  • Namburu, P., Kulkarni, D., Dandekar, A., & Das, D. (2007). Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids. Micro and Nano Letters, IET, 2(3), 67–71.

    Article  Google Scholar 

  • Nguyen, C. T., Desgranges, F., Roy, G., Galanis, N., Maré, T., Boucher, S., et al. (2007). Mintsa, temperature and particle-size dependent viscosity data for water-based nanofluids—Hysteresis phenomenon. International Journal of Heat and Fluid Flow, 28(6), 1492–1506.

    Article  Google Scholar 

  • Nielsen, L. E. (1970). Generalized equation for the elastic moduli of composite materials. Journal of Applied Physics, 41(11), 4626–4627.

    Article  Google Scholar 

  • Özerinç, S., Kakaç, S., & Yazıcıoğlu, A. G. (2010). Enhanced thermal conductivity of nanofluids: A state-of-the-art review. Microfluidics and Nanofluidics, 8(2), 145–170.

    Article  Google Scholar 

  • Pak, B. C., & Cho, Y. I. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer an International Journal, 11(2), 151–170.

    Article  Google Scholar 

  • Patel, H. E., Sundararajan, T., & Das, S. K. (2010). An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids. Journal of Nanoparticle Research, 12(3), 1015–1031.

    Article  Google Scholar 

  • Prasher, R., Phelan, P. E., & Bhattacharya, P. (2006a). Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Letters, 6(7), 1529–1534.

    Article  Google Scholar 

  • Prasher, R., Song, D., Wang, J., & Phelan, P. (2006b). Measurements of nanofluid viscosity and its implications for thermal applications. Applied Physics Letters, 89(13), 133108.

    Article  Google Scholar 

  • Sahoo, B. C., Das, D. K., Vajjha, R. S., & Satti, J. R. (2012). Measurement of the thermal conductivity of silicon dioxide nanofluid and development of correlations. Journal of Nanotechnology in Engineering and Medicine, 3(4), 041006.

    Article  Google Scholar 

  • Sekhar, Y. R., & Sharma, K. (2015). Study of viscosity and specific heat capacity characteristics of water-based Al2O3 nanofluids at low particle concentrations. Journal of Experimental Nanoscience, 10(2), 86–102.

    Article  Google Scholar 

  • Sharma, A. K., Tiwari, A. K., & Dixit, A. R. (2016). Rheological behaviour of nanofluids: A review. Renewable and Sustainable Energy Reviews, 53, 779–791.

    Article  Google Scholar 

  • Sharma, K., Sarma, P., Azmi, W., Mamat, R., & Kadirgama, K. (2010). Correlations to predict friction and forced convection heat transfer coefficients of water based nanofluids for turbulent flow in a tube. International Journal of Microscale and Nanoscale Thermal and Fluid Transport Phenomena, 3, 283–308.

    Google Scholar 

  • Shima, P., Philip, J., & Raj, B. (2009). Role of microconvection induced by Brownian motion of nanoparticles in the enhanced thermal conductivity of stable nanofluids. Applied Physics Letters, 94(22), 223101.

    Article  Google Scholar 

  • Sridhara, V., & Satapathy, L. N. (2011). Al2O3-based nanofluids: A review. Nanoscale Research Letters, 6(1), 1–16.

    Article  Google Scholar 

  • Sun, T., & Teja, A. S. (2004). Density, viscosity and thermal conductivity of aqueous solutions of propylene glycol, dipropylene glycol, and tripropylene glycol between 290 K and 460 K. Journal of Chemical and Engineering Data, 49(5), 1311–1317.

    Article  Google Scholar 

  • Sundar, L. S., Ramana, E. V., Singh, M. K., & Sousa, A. C. (2014). Thermal conductivity and viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids for heat transfer applications: an experimental study. International Communications in Heat and Mass Transfer, 56, 86–95.

    Article  Google Scholar 

  • Sundar, L. S., Sharma, K., Naik, M., & Singh, M. K. (2013a). Empirical and theoretical correlations on viscosity of nanofluids: A review. Renewable and Sustainable Energy Reviews, 25, 670–686.

    Article  Google Scholar 

  • Sundar, L. S., Singh, M. K., & Sousa, A. C. (2013b). Thermal conductivity of ethylene glycol and water mixture based Fe3O4 nanofluid. International Communications in Heat and Mass Transfer, 49, 17–24.

    Article  Google Scholar 

  • Teng, T.-P., & Hung, Y.-H. (2014). Estimation and experimental study of the density and specific heat for alumina nanofluid. Journal of Experimental Nanoscience, 9(7), 707–718.

    Article  Google Scholar 

  • Teng, T.-P., Hung, Y.-H., Teng, T.-C., Mo, H.-E., & Hsu, H.-G. (2010). The effect of alumina/water nanofluid particle size on thermal conductivity. Applied Thermal Engineering, 30(14), 2213–2218.

    Article  Google Scholar 

  • Tseng, W. J., & Lin, K.-C. (2003). Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions. Materials Science and Engineering A, 355(1–2), 186–192.

    Article  Google Scholar 

  • Turgut, A., Tavman, I., Chirtoc, M., Schuchmann, H. P., Sauter, C., & Tavman, S. (2009). Thermal conductivity and viscosity measurements of water-based TiO2 nanofluids. International Journal of Thermophysics, 30, 1213–1226.

    Article  Google Scholar 

  • Vajjha, R., Das, D., & Mahagaonkar, B. (2009). Density measurement of different nanofluids and their comparison with theory. Petroleum Science and Technology, 27(6), 612–624.

    Article  Google Scholar 

  • Vajjha, R. S., & Das, D. K. (2009a). Experimental determination of thermal conductivity of three nanofluids and development of new correlations. International Journal of Heat and Mass Transfer, 52(21), 4675–4682.

    Article  MATH  Google Scholar 

  • Vajjha, R. S., & Das, D. K. (2009b). Specific heat measurement of three nanofluids and development of new correlations. Journal of Heat Transfer, 131(7), 071601.

    Article  Google Scholar 

  • Wang, B.-X., Zhou, L.-P., & Peng, X.-F. (2006). Surface and size effects on the specific heat capacity of nanoparticles. International Journal of Thermophysics, 27(1), 139–151.

    Article  Google Scholar 

  • Wang, X., Xu, X., & Choi, S. U. S. (1999). Thermal conductivity of nanoparticle–fluid mixture. Journal of Thermophysics and Heat Transfer, 13(4), 474–480.

    Article  Google Scholar 

  • Wang, X.-J., Zhu, D.-S., & Yang, S. (2009). Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids. Chemical Physics Letters, 470(1–3), 107–111.

    Article  Google Scholar 

  • Wang, X.-Q., & Mujumdar, A. S. (2007). Heat transfer characteristics of nanofluids: A review. International Journal of Thermal Sciences, 46(1), 1–19.

    Article  Google Scholar 

  • Wang, Y., Fisher, T. S., Davidson, J., & Jiang, L. (2002). Thermal conductivity of nanoparticle suspensions. In 8th AIAA and ASME Joint Thermophysics and Heat Transfer Conference.

    Google Scholar 

  • Wasp, F. J. (1977). Solid-liquid slurry pipeline transportation. Berlin: Trans. Tech.

    Google Scholar 

  • White, F. M. (1991). Viscous fluid flow.

    Google Scholar 

  • Xie, H., Fujii, M., & Zhang, X. (2005). Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. International Journal of Heat and Mass Transfer, 48(14), 2926–2932.

    Article  MATH  Google Scholar 

  • Xie, H., Wang, J., Xi, T., & Liu, Y. (2001). Study on the thermal conductivity of SiC nanofluids. Journal-Chinese Ceramic Society, 29(4), 361–364.

    Google Scholar 

  • Xie, H., Wang, J., Xi, T., Liu, Y., Ai, F., & Wu, Q. (2002a). Thermal conductivity enhancement of suspensions containing nanosized alumina particles. Journal of Applied Physics, 91(7), 4568–4572.

    Article  Google Scholar 

  • Xie, H., Yu, W., & Chen, W. (2010). MgO nanofluids: Higher thermal conductivity and lower viscosity among ethylene glycol-based nanofluids containing oxide nanoparticles. Journal of Experimental Nanoscience, 5(5), 463–472.

    Article  Google Scholar 

  • Xie, H., Yu, W., Li, Y., & Chen, L. (2011). Discussion on the thermal conductivity enhancement of nanofluids. Nanoscale Research Letters, 6(1), 124.

    Article  Google Scholar 

  • Xie, H.-Q., Wang, J.-C., Xi, T.-G., & Liu, Y. (2002b). Thermal conductivity of suspensions containing nanosized SiC particles. International Journal of Thermophysics, 23(2), 571–580.

    Article  Google Scholar 

  • Xuan, Y., & Li, Q. (2000). Heat transfer enhancement of nanofluids. International Journal of Heat and Fluid Flow, 21(1), 58–64.

    Article  Google Scholar 

  • Xue, Q., & Xu, W.-M. (2005). A model of thermal conductivity of nanofluids with interfacial shells. Materials Chemistry and Physics, 90(2), 298–301.

    Article  Google Scholar 

  • Xue, Q.-Z. (2003). Model for effective thermal conductivity of nanofluids. Physics Letters A, 307(5), 313–317.

    Article  Google Scholar 

  • Yiamsawasd, T., Dalkilic, A. S., & Wongwises, S. (2012). Measurement of specific heat of nanofluids. Current Nanoscience, 8(6), 939–944.

    Article  Google Scholar 

  • Yoo, D.-H., Hong, K., & Yang, H.-S. (2007). Study of thermal conductivity of nanofluids for the application of heat transfer fluids. Thermochimica Acta, 455(1), 66–69.

    Article  Google Scholar 

  • Yu, C. J., Richter, A., Datta, A., Durbin, M., & Dutta, P. (2000). Molecular layering in a liquid on a solid substrate: an X-ray reflectivity study. Physica B: Condensed Matter, 283(1), 27–31.

    Article  Google Scholar 

  • Yu, W., & Choi, S. (2004). The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton-Crosser model. Journal of Nanoparticle Research, 6(4), 355–361.

    Article  Google Scholar 

  • Yu, W., & Choi, S. U. S. (2003). The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model. Journal of Nanoparticle Research, 5(1–2), 16–171.

    Google Scholar 

  • Yu, W., Xie, H., Li, Y., Chen, L., & Wang, Q. (2012). Experimental investigation on the heat transfer properties of Al2O3 nanofluids using the mixture of ethylene glycol and water as base fluid. Powder Technology, 230, 14–19.

    Article  Google Scholar 

  • Zhou, L.-P., Wang, B.-X., Peng, X.-F., Du, X.-Z., & Yang, Y.-P. (2010) On the specific heat capacity of CuO nanofluid. Advances in Mechanical Engineering.

    Google Scholar 

  • Zhou, S.-Q., & Ni, R. (2008). Measurement of the specific heat capacity of water–based Al2O3 nanofluid. Applied Physics Letters, 92(9), 093123–093123–3.

    Google Scholar 

  • Zhu, H., Zhang, C., Liu, S., Tang, Y., & Yin, Y. (2006). Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids. Applied Physics Letters, 89(2), 3123.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial assistance from the Ministry of Higher Education, Malaysia under FRGS grant vide Reference No. FRGS/1/2014/TK01/UTP/01/1 with cost centre 0153AB-K01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sharma, K.V., Suleiman, A., Hassan, H.S.B., Hegde, G. (2017). Considerations on the Thermophysical Properties of Nanofluids. In: Korada, V., Hisham B Hamid, N. (eds) Engineering Applications of Nanotechnology. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-29761-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29761-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29759-0

  • Online ISBN: 978-3-319-29761-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics