Skip to main content

Current Trends in the Preparation of Nanoparticles for Drug Delivery

  • Chapter
  • First Online:
Book cover Engineering Applications of Nanotechnology

Abstract

The efficiency of a drug depends on target specificity and its solubility. The non-specificity of the drug molecules not only needs extra doses to treat diseases but also is associated with adverse drug reactions. Thus, newly engineered nanoparticles as a vector represent an exciting example which has shifted the paradigm from conventional therapies such as surgery, chemotherapy, and radiation to the novel drug delivery system. Among the nanocarriers developed so far, silica and gold nanoparticles have emerged as potential candidates who can deliver different drug molecules at target sites in a controllable and sustainable approach. In the present era, drugs released and delivered by engineered nanoparticles have attracted enough attention because of the prospects in cancer therapy, in particular, and in the treatment of other ailments. The fundamental properties of nanoparticles in drug loading, releasing, and biochemical competency can be altered by means of suitable conjugation with appropriate coatings or external magnetic fields. Therefore, this book chapter is focused on preparation, development, and application of very recently reported silica and gold nanoparticle system as a drug delivery cargo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikari, C., Das, A., & Chakraborty, A. (2015). Controlled release of a sparingly water-soluble anticancer drug through ph-responsive functionalized gold-nanoparticle-decorated. ChemPhysChem, 16(4), 866–871.

    Article  Google Scholar 

  • Alexander, C. M., Hamner, K. L., Maye, M. M., & Dabrowiak, J. C. (2014). Multifunctional DNA-gold nanoparticles for targeted doxorubicin delivery. Bioconjugate Chemistry, 25(7), 1261–1271.

    Article  Google Scholar 

  • An, J., Zhang, X., Guo, Q., Zhao, Y., Wu, Z., & Li, C. (2015). Glycopolymer modified magnetic mesoporous silica nanoparticles for MR imaging and targeted drug delivery. Colloids and Surfaces A: Physicochemical Engineering Aspects, 482, 98–108.

    Article  Google Scholar 

  • Andreani, T., de Souza, A. L., Kiill, C. P., Lorenzón, E. N., Fangueiro, J. F., Calpena, A. C., et al. (2014a). Preparation and characterization of PEG-coated silica nanoparticles for oral insulin delivery. International Journal of Pharmaceutics, 473(1–2), 627–635.

    Article  Google Scholar 

  • Andreani, T., Kiill, C. P., Souza, A. L. R. D., Fangueiro, J. F., Fernandes, L., Doktorovová, S., et al. (2014b). Surface engineering of silica nanoparticles for oral insulin delivery: Characterization and cell toxicity studies. Colloids and Surfaces B: Biointerfaces, 123, 916–923.

    Article  Google Scholar 

  • Antosh, M. P., Wijesinghe, D. D., Shrestha, S., Lanou, R., Huang, Y. H., Hasselbacher, T., et al. (2015). Enhancement of radiation effect on cancer cells by gold-pHLIP. Proceedings of the National Academy of Sciences of the United States of America, 112(17), 5372–5376.

    Article  Google Scholar 

  • Athinarayanan, J., Periasamy, V. S., Alhazmi, M., Alatiah, K. A., & Alshatwi, A. A. (2014). Synthesis of biogenic silica nanoparticles from rice husks for biomedical applications. Ceramics International, 41(1), 275–281.

    Article  Google Scholar 

  • Bae, Y. H., Mrsny, R. J., Park, K. (2013) Dream. Chapter 26, The missing components today and the new treatments tomorrow 689. In Cancer targeted drug delivery an elusive. New York, Heidelberg, Dordrecht, London: Springer. doi:10.1007/978-1-4614-7876-8

  • Bao, Q.-Y., Zhang, N., Geng, D.-D., Xue, J.-W., Merritt, M., Zhang, C., et al. (2014). The enhanced longevity and liver targetability of paclitaxel by hybrid liposomes encapsulating paclitaxel-conjugated gold nanoparticles. International Journal of Pharmaceutics, 477(1–2), 408–415.

    Article  Google Scholar 

  • Blaudszun, A.-R., Lian, Q., Schnabel, M., Loretz, B., Steinfeld, U., Lee, H.-H., et al. (2014). Polyester-idarubicin nanoparticles and a polymer-photosensitizer complex as potential drug formulations for cell-mediated drug delivery. International Journal of Pharmaceutics, 474(1–2), 70–79.

    Article  Google Scholar 

  • Chen, X., Soeriyadi, A. H., Lu, X., Sagnell, S. M., Kavallaris, M., & Gooding, J. J. (2014). Dual bioresponsive mesoporous silica nanocarrier as an “AND” logic gate for targeted drug delivery cancer cells. Advanced Functional Materials, 24(44), 6999–7006.

    Google Scholar 

  • Chen, X., Yao, X., Wang, C., Chen, L., & Chen, X. (2015). Mesoporous silica nanoparticles capped with fluorescence-conjugated cyclodextrin for pH-activated controlled drug delivery and imaging. Microporous and Mesoporous Materials, 217, 46–53.

    Article  Google Scholar 

  • Cheng, Y., Dai, Q., Morshed, R. A., Fan, X., Wegscheid, M. L., Wainwright, D. A., et al. (2014). Blood-brain barrier permeable gold nanoparticles: An efficient delivery platform for enhanced malignant glioma therapy and imaging. Small (Weinheim an der Bergstrasse, Germany), 10(24), 5137–5150.

    Google Scholar 

  • Coelho, S. C., Almeida, G. M., Pereira, M. C., Santos-Silva, F., Coelho, M. A. N. (2015). Functionalized gold nanoparticles improve afatinib delivery into cancer cells. Expert Opinion on Drug Delivery (Article in Press). doi:10.1517/17425247.2015.1083973

  • Couvreur, P. (2013). Nanoparticles in drug delivery: Past, present and future. Advanced Drug Delivery Reviews, 65(1), 21–23.

    Google Scholar 

  • Dai, L., Li, J., Zhang, B., Liu, J., Luo, Z., & Cai, K. (2014). Redox-responsive nanocarrier based on heparin end-capped mesoporous silica nanoparticles for targeted tumor therapy in vitro and in vivo. Langmuir, 30(26), 7867–7877.

    Article  Google Scholar 

  • De Jong, W. H., & Borm, P. A. (2008). Drug delivery and nanoparticle: Application and hazards. International Journal of Nanomedicine, 3(2), 133–149.

    Article  Google Scholar 

  • de la Torre, C., Mondragón, L., Coll, C., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., Amorós, P., Pérez-Payá, E., Orzáez, M. (2014). Cathepsin-B induced controlled release from peptide-capped mesoporous silica nanoparticles. Chemistry (Weinheim an der Bergstrasse, Germany), 20(47), 15309–15314.

    Google Scholar 

  • Dharmatti, R., Phadke, C., Mewada, A., Thakur, M., Pandey, S., & Sharon, M. (2014). Biogenic gold nano-triangles: Cargos for anticancer drug delivery. Materials Science and Engineering C, 44, 92–98.

    Article  Google Scholar 

  • Dong, L., Peng, H., Wang, S., Zhang, Z., Li, J., Ai, F., et al. (2014). Thermally and magnetically dual-responsive mesoporous silica nanospheres: Preparation, characterization, and properties for the controlled release of sophoridine. Journal of Applied Polymer Science, 131(13), 40477.

    Google Scholar 

  • Elbialy, N. S., Fathy, M. M., & Khalil, W. M. (2015). Doxorubicin loaded magnetic gold nanoparticles for in vivo targeted drug delivery. International Journal of Pharmaceutics, 490, 190–199.

    Article  Google Scholar 

  • Fang, W., Wang, Z., Zong, S., Chen, H., Zhu, D., Zhong, Y., et al. (2014). PH-controllable drug carrier with SERS activity for targeting cancer cells. Biosensors and Bioelectronics, 57, 10–15.

    Google Scholar 

  • Feng, W., Nie, W., He, C., Zhou, X., Chen, L., Qiu, K., et al. (2014). Effect of pH-responsive alginate/chitosan multilayers coating on delivery efficiency, cellular uptake and biodistribution of mesoporous silica nanoparticles based nanocarriers. (2014) Applied Materials and Interfaces, 6(11), 8447–8460.

    Google Scholar 

  • Ganesh, K. C., Poornachandra, Y., & Mamidyala, S. K. (2014). Green synthesis of bacterial gold nanoparticles conjugated to resveratrol as delivery vehicles. Colloids and Surfaces B: Biointerfaces, 123, 311–317.

    Article  Google Scholar 

  • Ganeshkumar, M., Ponrasu, T., Raja, M. D., Subamekala, M. K., & Suguna, L. (2014). Green synthesis of pullulan stabilized gold nanoparticles for cancer targeted drug delivery. Spectrochimica Acta—Part A: Molecular and Biomolecular Spectroscopy, 130, 64–71.

    Article  Google Scholar 

  • Ghasemnejad, M., Ahmadi, E., Mohamadnia, Z., Doustgania, A., & Hashemikia, S. (2015). Functionalized silica nanoparticles as a carrier for Betamethasone Sodium Phosphate: Drug release study and statistical optimization of drug loading by response surface method. Materials Science and Engineering C, 56, 223–232.

    Article  Google Scholar 

  • Goldberg, M., Manzi, A., Aydin, E., Singh, G., Khoshkenar, P., Birdi, A., et al. (2015). Development of a nanoparticle-embedded chitosan sponge for topical and local administration of chemotherapeutic agents. Journal of Nanotechnology in Engineering and Medicine, 5(4), 041006.

    Google Scholar 

  • Hakeem, A., Duan, R., Zahid, F., Dong, C., Wang, B., Hong, F., et al. (2014). Dual stimuli-responsive nano-vehicles for controlled drug delivery: Mesoporous silica nanoparticles end-capped with natural chitosan. Chemical Communications, 50(87), 13268–13271.

    Article  Google Scholar 

  • Hanafi-Bojd, M. Y., Jaafari, M. R., Ramezanian, N., Xue, M., Amin, M., Shahtahmasbi, N., et al. (2015). Surface functionalized mesoporous silica nanoparticles as an effective carrier for epirubicin delivery to cancer cells. European Journal of Pharmaceutics and Biopharmaceutics, 89, 248–258.

    Article  Google Scholar 

  • He, C. L., Jin, X. B., & Ma, P. X. (2014). Calcium phosphate deposition rate, structure and osteoconductivity on electrospun poly(L-lactic acid) matrix using electrodeposition or simulated body fluid incubation. Acta Biomateriala, 10, 419–427.

    Article  Google Scholar 

  • He, C. L., Zhang, F., Cao, L. J., Feng, W., Qiu, K. X., Zhang, Y. Z., et al. (2012). Rapid mineralization of porous gelatin scaffolds by electrodeposition for bone tissue engineering. Journal of Material Chemistry, 22, 2111–2119.

    Article  Google Scholar 

  • Hulkoti, N. I., & Taranath, T. C. (2014). Biosynthesis of nanoparticles using microbes-a review. Colloids and Surfaces B: Biointerfaces, 121(1), 474–483.

    Article  Google Scholar 

  • Jambhrunkar, S., Qu, Z., Popat, A., Yang, J., Noonan, O., Acauan, L., et al. (2014). Effect of surface functionality of silica nanoparticles on cellular uptake and cytotoxicity. Molecular Pharmaceutics, 11(10), 3642–3655.

    Article  Google Scholar 

  • Jenkins, S. V., Srivatsan, A., Reynolds, K. Y., Gao, F., Zhang, Y., Heyes, C. D., et al. (2016). Understanding the interactions between porphyrin-containing photosensitizers and polymer-coated nanoparticles in model biological environments. Journal of Colloid and Interface Science, 461, 225–231.

    Article  Google Scholar 

  • Karthik, S., Jana, A., Saha, B., Kalyani, B. K., Ghosh, S. K., Zhao, Y., et al. (2014). Synthesis and in vitro evaluation of charge reversal photoresponsive quinoline tethered mesoporous silica for targeted drug delivery. Journal of Materials Chemistry B, 2(45), 7971–7977.

    Article  Google Scholar 

  • Khan, A. K., Rashid, R., Murtaza, G., & Zahra, A. (2015). Gold nanoparticles: Synthesis and applications in drug delivery tropical. Journal of Pharmaceutical Research, 13(7), 1169–1177.

    Google Scholar 

  • Khandelia, R., Bhandari, S., Pan, U. N., Ghosh, S. S., & Chattopadhyay, A. (2015). Gold nanocluster embedded albumin nanoparticles for two-photon imaging of cancer cells accompanying drug delivery. Small (Weinheim an der Bergstrasse, Germany), 11(33), 4075–4081.

    Article  Google Scholar 

  • Lajunen, T., Viitala, L., Kontturi, L.-S., Laaksonen, T., Liang, H., Vuorimaa-Laukkanen, E., et al. (2015). Light induced cytosolic drug delivery from liposomes with gold nanoparticles. Journal of Controlled Release, 203, 85–98.

    Article  Google Scholar 

  • Latorre, A., Posch, C., Garcimartín, Y., Celli, A., Sanlorenzo, M., Vujic, I., et al. (2014). DNA and aptamer stabilized gold nanoparticles for targeted delivery of anticancer therapeutics. Nanoscale, 6(13). 7436–7442.

    Google Scholar 

  • Lee, J., Kim, J., Go, J., Lee, J. H., Han, D.-W., Hwang, D., et al. (2015a). Transdermal treatment of the surgical and burned wound skin via phytochemical-capped gold nanoparticles. Colloids and Surfaces B: Biointerfaces, 135, 166–174.

    Article  Google Scholar 

  • Lee, K. Y. J., Wang, Y., & Nie, S. (2015). In vitro study of a pH-sensitive multifunctional doxorubicin-gold nanoparticle system: Therapeutic effect and surface enhanced Raman scattering. Royal Society Chemistry Advances, 5(81), 65651–65659.

    Google Scholar 

  • Li, K., Sun, H., Sui, H., Zhang, Y., Liang, H., Wu, X., et al. (2015). Composite mesoporous silica nanoparticle/chitosan nanofibers for bone tissue engineering. RSC Advanced. doi:10.1039/C4RA15232H (In Press).

  • Li, Q.-L., Sun, Y., Sun, Y.-L., Wen, J., Zhou, Y., Bing, Q.-M., et al. (2014a). Mesoporous silica nanoparticles coated by layer-by-layer self-assembly using cucurbit[7]uril for in vitro and in vivo anticancer drug release. Chemistry of Materials, 26(22), 6418–6431.

    Article  Google Scholar 

  • Li, A., Zhang, J., Xu, Y., Liu, J., & Feng, S. (2014b). Thermoresponsive copolymer/SiO2 nanoparticles with dual functions of thermally controlled drug release and simultaneous carrier decomposition. Chemistry—A European Journal, 20(40), 12945–12953.

    Article  Google Scholar 

  • Liao, Y. T., Liu, C. H., Yu, J., & Wu, K. C. W. (2014). Liver cancer cells: Targeting and prolonged-release drug carriers consisting of mesoporous silica nanoparticles and alginate microspheres. International Journal of Nanomedicine, 9(1), 2767–2778.

    Google Scholar 

  • Liu, Y., He, M., Niu, M., Zhao, Y., Zhu, Y., Li, Z., et al. (2015). Delivery of vincristine sulfate-conjugated gold nanoparticles using liposomes: A light-responsive nanocarrier with enhanced antitumor efficiency. International Journal of Nanomedicine, 10, 3081–3095.

    Google Scholar 

  • Liu, X., Yu, D., Jin, C., Song, X., Cheng, J., Zhao, X., et al. (2014). A dual responsive targeted drug delivery system based on smart polymer coated mesoporous silica for laryngeal carcinoma treatment. New Journal of Chemistry, 38(10), 4830–4836.

    Article  Google Scholar 

  • Luo, Z., Denga, Y., Zhang, R., Wang, M., Baid, Y., Zhaod, Q., et al. (2015). Peptide-laden mesoporous silica nanoparticles with promotedbioactivity and osteo-differentiation ability for bone tissue engineering. Colloids and Surfaces B: Biointerfaces, 131, 73–82.

    Article  Google Scholar 

  • Ma, X., Devi, G., Qu, Q., Toh, D.-F. K, Chen, G., & Zhao, Y. (2014b). Intracellular delivery of antisense peptide nucleic acid by fluorescent mesoporous silica nanoparticles Bioconjugate Chemistry, 25(8), 1412–1420.

    Google Scholar 

  • Ma, M., Zheng, S., Chen, H., Yao, M., Zhang, K., Jia, X., et al. (2014a). A combined “rAFT” and “graft From” polymerization strategy for surface modification of mesoporous silica nanoparticles: Towards enhanced tumor accumulation and cancer therapy efficacy. Journal of Materials Chemistry B, 2(35), 5828–5836.

    Article  Google Scholar 

  • Ma’Mani, L., Nikzad, S., Kheiri-Manjili, H., Al-Musawi, S., Saeedi, M., Askarlou, S., et al. (2014). Curcumin-loaded guanidine functionalized PEGylated I3ad mesoporous silica nanoparticles KIT-6: Practical strategy for the breast cancer therapy. European Journal of Medicinal Chemistry, 83, 646–654.

    Article  Google Scholar 

  • McCully, M., Hernandez, Y., Conde, J., Baptista, P. V., de la Fuente, J. M., Hursthouse, A., et al. (2015). Significance of the balance between intracellular glutathione and polyethylene glycol for successful release of small interfering RNA from gold nanoparticles. Nano Research (In Press). doi:10.1007/s12274-015-0828-5

  • Meddahi-Pelle, A., Legrand, A., Marcellan, A., Louedec, L., Letourneur, D., & Leibler, L. (2014). Organ repair, hemostasis, and in vivo bonding of medical devices by aqueous solutions of nanoparticles. Angewandte Chemie Int Ed, 53, 1–6.

    Article  Google Scholar 

  • Mitra, P., Chakraborty, P. K., Saha, P., Ray, P., & Basu, S. (2014). Antibacterial efficacy of acridine derivatives conjugated with gold nanoparticles. International Journal of Pharmaceutics, 473(1–2), 636–643.

    Article  Google Scholar 

  • Moghimi, S.M., Peer, D., & Langer, R. (2011). Reshaping the future of nanopharmaceuticals: Ad iudicium. ACS Nano, 5(11), 8454–8458.

    Google Scholar 

  • Mohammad, F., & Yusof, N. A. (2014). Doxorubicin-loaded magnetic gold nanoshells for a combination therapy of hyperthermia and drug delivery. Journal of Colloid and Interface Science, 434, 89–97.

    Article  Google Scholar 

  • Mohapatra, S., Rout, S. R., Narayan, R., & Maiti, T. K. (2014). Multifunctional mesoporous hollow silica nanocapsules for targeted co-delivery of cisplatin-pemetrexed and MR imaging. Dalton Transactions, 43(42), 15841–15850.

    Article  Google Scholar 

  • Munaweera, I., Hong, J., D’Souza, A., & Balkus, K. J., Jr. (2015). Novel wrinkled periodic mesoporous organosilica nanoparticles for hydrophobic anticancer drug delivery. Journal of Porous Materials, 22, 1–10.

    Article  Google Scholar 

  • Niemelä, E., Desai, D., Nkizinkiko, Y., Eriksson, J. E., & Rosenholm, J. M. (2015). Sugar-decorated mesoporous silica nanoparticles as delivery vehicles for the poorly soluble drug celastrol enables targeted induction of apoptosis in cancer cells. European Journal of Pharmaceutics and Biopharmaceutics, 96, 11–21.

    Article  Google Scholar 

  • Park, J., Park, J., Ju, E. J., Park, S. S., Choi, J., Lee, J. H., et al. (2015). Multifunctional hollow gold nanoparticles designed for triple combination therapy and CT imaging. Journal of Controlled Release, 207, 77–85.

    Article  Google Scholar 

  • Patra, S., Mukherjee, S., Barui, A. K., Ganguly, A., Sreedhar, B., & Patra, C. R. (2015). Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Materials Science and Engineering C, 53, 298–309.

    Article  Google Scholar 

  • Pooja, D., Panyaram, S., Kulhari, H., Rachamalla, S. S., & Sistla, R. (2014). Xanthan gum stabilized gold nanoparticles: Characterization, biocompatibility, stability and cytotoxicity. Carbohydrate Polymers, 110, 1–9.

    Article  Google Scholar 

  • Pooja, D., Panyaram, S., Kulhari, H., Reddy, B., Rachamalla, S. S., & Sistla, R. (2015). Natural polysaccharide functionalized gold nanoparticles as biocompatible drug delivery carrier. International Journal of Biological Macromolecules, 80, 48–56.

    Article  Google Scholar 

  • Popat, A., Jambhrunkar, S., Zhang, J., Yang, J., Zhang, H., Meka, A., et al. (2014). Programmable drug release using bioresponsive mesoporous silica nanoparticles for site-specific oral drug delivery. Chemical Communications, 50(42), 5547–5550.

    Article  Google Scholar 

  • Popova, M., Szegedi, A., Yoncheva, K., Konstantinov, S., Petrova, G. P., Aleksandrov, H. A., et al. (2014). New method for preparation of delivery systems of poorly soluble drugs on the basis of functionalized mesoporous MCM-41 nanoparticles. Microporous and Mesoporous Materials, 198, 247–255.

    Article  Google Scholar 

  • Pourjavadi, A., & Tehrani, Z. M. (2014). Mesoporous silica nanoparticles (MCM-41) coated PEGylated chitosan as a pH-responsive nanocarrier for triggered release of erythromycin. International Journal of Polymeric Materials and Polymeric Biomaterials, 63(13), 692–697.

    Article  Google Scholar 

  • Raju, G. S. R., Benton, L., Pavitra, E., & Yu, J. S. (2015). Multifunctional nanoparticles: Recent progress in cancer therapeutics. Chemical Communications, 51(68), 13248–13259.

    Article  Google Scholar 

  • Ranghar, S., Sirohi, P., Verma, P., & Agarwal, V. (2014). Nanoparticle-based drug delivery systems: Promising approaches against infections. Brazilian Archives of Biology and Technology, 57, 209–222.

    Article  Google Scholar 

  • Ravera, M., Perin, E., Gabano, E., Zanellato, I., Panzarasa, G., Sparnacci, K., et al. (2015). Functional fluorescent nonporous silica nanoparticles as carriers for Pt(IV) anticancer prodrugs. Journal of Inorganic Biochemistry (In Press). doi:10.1016/j.jinorgbio.2015.08.001

  • Ren, M., Han, Z., Li, J., Feng, G., & Ouyang, S. (2015). Ascorbic acid delivered by mesoporous silica nanoparticles induces the differentiation of human embryonic stem cells into cardiomyocytes. Materials Science and Engineering C, 56, 348–355.

    Article  Google Scholar 

  • Seo, J. M., Kim, E. B., Hyun, M. S., Kim, B. B., & Park, T. J. (2015). Self-assembly of biogenic gold nanoparticles and their use to enhance drug delivery into cells. Colloids and Surfaces B: Biointerfaces, 135, 27–34.

    Article  Google Scholar 

  • Sharma, H., Mishra, P. K., Talegaonkar, S., & Vaidya, B. (2015). Metal nanoparticles: A theranostic nanotool against cancer. Drug Discovery Today, 20(9), 1143–1151.

    Article  Google Scholar 

  • She, X., Chen, L., Velleman, L., Li, C., Zhu, H., He, C., et al. (2015). Fabrication of high specificity hollow mesoporous silica nanoparticles assisted by Eudragit for targeted drug delivery. Journal of Colloid and Interface Science, 445, 151–160.

    Article  Google Scholar 

  • Sun, L., Wu, Q., Peng, F., Liu, L., & Gong, C. (2015). Strategies of polymeric nanoparticles for enhanced internalization in cancer therapy. Colloids and Surfaces B: Biointerfaces, 135(1), 56–72.

    Article  Google Scholar 

  • Tan, S. Y., Ang, C. Y., Li, P., Yap, Q. M., & Zhao, Y. (2014). Drug encapsulation and release by mesoporous silica nanoparticles: the effect of surface functional groups. Chemistry (Weinheim an der Bergstrasse, Germany), 20 (36): 11276–11282.

    Google Scholar 

  • Thamphiwatana, S., Gao, W., Pornpattananangkul, D., Zhang, Q., Fu, V., Li, J., et al. (2014). Phospholipase A2-responsive antibiotic delivery via nanoparticle-stabilized liposomes for the treatment of bacterial infection. Journal of Materials Chemistry B, 2(46), 8201–8207.

    Article  Google Scholar 

  • Théron, C., Gallud, A., Carcel, C., Gary-Bobo, M., Maynadier, M., Garcia, M., et al. (2014). Hybrid mesoporous silica nanoparticles with pH-operated and complementary H-bonding caps as an autonomous drug-delivery system. Chemistry–A European Journal, 20(30), 9372–9380.

    Google Scholar 

  • Tian, Y., Kong, Y., Li, X., Wu, J., Ko, A. C.-T., & Xing, M. (2015). Light- and pH- activated intracellular drug release from polymeric mesoporous silica nanoparticles. Colloids and Surfaces B: Biointerfaces, 134, 147–155.

    Article  Google Scholar 

  • Tomoaia, G., Horovitz, O., Mocanu, A., Nita, A., Avram, A., Racz, C. P., et al. (2015). Effects of doxorubicin mediated by gold nanoparticles and resveratrol in two human cervical tumor cell lines. Colloids and Surfaces B: Biointerfaces, 135(7323), 726–734.

    Article  Google Scholar 

  • Vines, J. B., Lim, D.-J., Anderson, J. M., & Jun, H.-W. (2012). Hydroxyapatite nanoparticle reinforced peptide amphiphile nanomatrix enhances the osteogenic differentiation of mesenchymal stem cells by compositional ratios. Acta Biomateriala, 8, 4053–4063.

    Article  Google Scholar 

  • Wang, Y., Han, N., Zhao, Q., Bai, L., Li, J., Jiang, T., et al. (2015a). Redox-responsive mesoporous silica as carriers for controlled drug delivery: A comparative study based on silica and PEG gatekeepers. European Journal of Pharmaceutical Sciences, 72, 12–20.

    Article  Google Scholar 

  • Wang, Y., Wise, A. K., Tan, J., Maina, J. W., Shepherd, R. K., & Caruso, F. (2014). Mesoporous silica supraparticles for sustained inner-ear drug delivery. Small, 10(21), 4244–4248.

    Google Scholar 

  • Wang, Y., Zhao, Q., Han, N., Bai, L., Li, J., Liu, J., et al. (2015b). Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine: Nanotechnology, Biology and Medicine, 11(2), 313–327.

    Google Scholar 

  • Wu, C., Zhao, Z., Zhao, Y., Hao, Y., Liu, Y., & Liu, C. (2014). Preparation of a push-pull osmotic pump of felodipine solubilized by mesoporous silica nanoparticles with a core-shell structure. International Journal of Pharmaceutics, 475(1), e298–e305.

    Article  Google Scholar 

  • Xu, X., Lü, S., Gao, C., Wang, X., Bai, X., Duan, H., et al. (2015a). Polymeric micelle-coated mesoporous silica nanoparticle for enhanced fluorescent imaging and pH-responsive drug delivery. Chemical Engineering Journal, 279, 851–860.

    Article  Google Scholar 

  • Xu, X., Shaoyu, L., Gao, C., Wang, X., Bai, X., Gao, N., et al. (2015b). Facile preparation of pH-sensitive and self-fluorescent mesoporous silica nanoparticles modified with PAMAM dendrimers for label-free imaging and drug delivery. Chemical Engineering Journal, 266, 171–178.

    Article  Google Scholar 

  • Xu, H., Zhang, H., Wang, D., Wu, L., Liu, X., & Jiao, Z. (2015c). A facile route for rapid synthesis of hollow mesoporous silica nanoparticles as pH-responsive delivery carrier. Journal of Colloid and Interface Science, 451, 101–107.

    Article  Google Scholar 

  • Yallappa, S., Manjanna, J., Dhananjaya, B. L., Vishwanatha, U., Ravishankar, B., & Gururaj, H. (2015). Phytosynthesis of gold nanoparticles using Mappia foetida leaves extract and their conjugation with folic acid for delivery of doxorubicin to cancer cells. Journal of Materials Science Materials in Medicine, 26(9), 235–247.

    Article  Google Scholar 

  • Zhang, P., & Kong, J. (2015). Doxorubicin-tethered fluorescent silica nanoparticles for pH-responsive anticancer drug delivery. Talanta, 134, 501–507.

    Article  Google Scholar 

  • Zhang, B., Luo, Z., Liu, J., Ding, X., Li, J., & Cai, K. (2014a). Cytochrome c end-capped mesoporous silica nanoparticles as redox-responsive drug delivery vehicles for liver tumor-targeted triplex therapy in vitro and in vivo. Journal of Controlled Release, 192, 192–201.

    Article  Google Scholar 

  • Zhang, Q., Neoh, K. G., Xu, L., Lu, S., Kang, E. T., Mahendran, R., et al. (2014). Functionalized mesoporous silica nanoparticles with mucoadhesive and sustained drug release properties for potential bladder cancer therapy. Langmuir, 30(21), 6151–6161.

    Google Scholar 

  • Zhao, P., Liu, H., Deng, H., Xiao, L., Qin, C., Du, Y., et al. (2014a). A study of chitosan hydrogel with embedded mesoporous silica nanoparticles loaded by ibuprofen as a dual stimuli-responsive drug release system for surface coating of titanium implants. Colloids and Surfaces B: Biointerfaces, 123, 657–663.

    Article  Google Scholar 

  • Zhao, Q., Wang, C., Liu, Y., Wang, J., Gao, Y., Zhang, X., et al. (2014b). PEGylated mesoporous silica as a redox-responsive drug delivery system for loading thiol-containing drugs. International Journal of Pharmaceutics, 477, 613–622.

    Article  Google Scholar 

  • Zhou, X., Feng, W., Qiu, K., Chen, L., Wang, W., Nie, W., et al. (2015). BMP-2 derived peptide and dexamethasone incorporated mesoporous silica nanoparticles for enhanced osteogenic differentiation of bone mesenchymal stem cells. ACS Applied Materials and Interfaces, 7(29), 15777–15789.

    Article  Google Scholar 

  • Zhu, X., Gu, J., Li, Y., Zhao, W., & Shi, J. (2014). Magnetic core-mesoporous shell nanocarriers with drug anchorages suspended in mesopore interior for cisplatin delivery. Microporous and Mesoporous Materials, 196, 115–121.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irshad Ul Haq Bhat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bhat, I.U.H., Khanam, Z., Bhat, A. (2017). Current Trends in the Preparation of Nanoparticles for Drug Delivery. In: Korada, V., Hisham B Hamid, N. (eds) Engineering Applications of Nanotechnology. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-29761-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29761-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29759-0

  • Online ISBN: 978-3-319-29761-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics