Skip to main content

Metamodeling of Model Evidence

  • Conference paper
  • First Online:
Model Validation and Uncertainty Quantification, Volume 3

Abstract

The Bayesian model evidence can be used for model selection in model updating problems. The evidence is calculated by computing the integral of the prior multiplied by the likelihood probability density functions (PDF). This integral is usually solved numerically using Monte Carlo integration techniques. A large number of samples of the likelihood and prior should be computed to implement such algorithms. This process might not be achievable when the model is computationally expensive. Researchers have proposed the use of metamodels to replace the computationally expensive model to solve this problem. In this paper we propose a different strategy. The evidence integrand is replaced by a metamodel, simplifying the model selection process because the scale parameter of the metamodel approximates the value of the integral and no Monte Carlo integration is needed. The proposed technique is explored using a set of numerical problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caicedo, J.M., Zárate, B.A., Giurgiutiu, V., Yu, L., Ziehl, P.: Bayesian finite element model updating for crack growth. In: Structural Dynamics, vol. 3, pp. 861–866. Springer, New York (2011)

    Google Scholar 

  2. Zárate, B.A., Caicedo, J.M., Wieger, G., Marulanda, J.: Bayesian finite element model updating using static and dynamic data. In: Structural Dynamics, vol. 3, pp. 395–402. Springer, New York (2011)

    Google Scholar 

  3. Burnham, K.P., Anderson, D.R.: Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer, New York (2002)

    MATH  Google Scholar 

  4. Yuen, K.-V., Beck, J.L., Katafygiotis, L.S.: Unified probabilistic approach for model updating and damage detection. J. Appl. Mech. 73 (4), 555–564 (2006)

    Article  MATH  Google Scholar 

  5. Beck, J.L., Katafygiotis, L.S.: Updating models and their uncertainties, I: Bayesian statistical framework. J. Eng. Mech. 124 (4), 455–461 (1998)

    Google Scholar 

  6. Behmanesh, I., Moaveni, B.: Probabilistic identification of simulated damage on the dowling hall footbridge through Bayesian finite element model updating. Struct. Control Health Monit. 22 (3), 463–483 (2015)

    Article  Google Scholar 

  7. Ortiz-Lasprilla, A.R., Caicedo, J.M.: Comparing closed loop control models and mass-spring-damper models for human structure interaction problems. In: Dynamics of Civil Structures, vol. 2, pp. 67–74. Springer, New York (2015)

    Google Scholar 

  8. Vakilzadeh, M.K., Yaghoubi, V., Johansson, A.T., Abrahamsson, T.: Manifold Metropolis adjusted Langevin algorithm for high-dimensional Bayesian FE model updating in structural dynamics. In: Cunha, A., Caetano, E., Ribeiro, P., Müller, G. (eds.) Proceedings of the 9th International Conference on Structural Dynamics, EURODYN 2014. Porto, 30 June-2 July (2014). https://web.fe.up.pt/~eurodyn2014/CD/papers/422_MS18_ABS_2065.pdf [ISBN 978-972-752-165-4]

  9. Boulkaibet, I., Marwala, T., Mthembu, L., Friswell, M., Adhikari, S.: Sampling techniques in Bayesian finite element model updating. In: Topics in Model Validation and Uncertainty Quantification, vol. 4, pp. 75–83. Springer, New York (2012)

    Google Scholar 

  10. Boulkaibet, I., Mthembu, L., Marwala, T., Friswell, M., Adhikari, S.: Finite element model updating using the shadow hybrid monte carlo technique. In: Special Topics in Structural Dynamics, vol. 6, pp. 489–498. Springer, New York (2013)

    Google Scholar 

  11. Boulkaibet, I., Mthembu, L., Marwala, T., Friswell, M., Adhikari, S.: Finite element model updating using the shadow hybrid monte carlo technique. Mech. Syst. Signal Process. 52, 115–132 (2015)

    Article  Google Scholar 

  12. McKenna, F.: Opensees: a framework for earthquake engineering simulation. Comput. Sci. Eng. 13 (4), 58–66 (2011)

    Article  Google Scholar 

  13. Melchers, R.: Importance sampling in structural systems. Struct. Saf. 6 (1), 3–10 (1989)

    Article  Google Scholar 

  14. Cheung, S.H., Beck, J.L.: Bayesian model updating using hybrid monte carlo simulation with application to structural dynamic models with many uncertain parameters. J. Eng. Mech. 135 (4), 243–255 (2009)

    Article  Google Scholar 

  15. Wan, H.-P., Mao, Z., Todd, M.D., Ren, W.-X.: Analytical uncertainty quantification for modal frequencies with structural parameter uncertainty using a gaussian process metamodel. Eng. Struct. 75, 577–589 (2014)

    Article  Google Scholar 

  16. Jones, D.R.: A taxonomy of global optimization methods based on response surfaces. J. Glob. Optim. 21 (4), 345–383 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Madarshahian, R., Caicedo, J.M.: Reducing mcmc computational cost with a two layered Bayesian approach. In: Model Validation and Uncertainty Quantification, vol. 3, pp. 291–297. Springer, Cham (2015)

    Google Scholar 

  18. James, F.: Statistical Methods in Experimental Physics, vol. 7. World Scientific, Singapore (2006)

    MATH  Google Scholar 

  19. Jaynes, E.T.: Probability Theory: The Logic of Science. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  20. VanderPlas, J.: Frequentism and Bayesianism: a python-driven primer. arXiv preprint. arXiv:1411.5018 (2014)

    Google Scholar 

  21. Bugnion, P.: Scikit-monaco: a python toolkit for monte carlo integration. https://pypi.python.org/pypi/scikit-monaco (2013)

  22. Robert, C., Casella, G.: Monte Carlo Statistical Methods. Springer, New York (2013)

    MATH  Google Scholar 

  23. Kolmogorov, A.: Foundations of the theory of probability. Second English edition: (trans: Morrison, N.). Chelsea Publishing Company, New York (1956). http://www.york.ac.uk/depts/maths/histstat/kolmogorov_foundations.pdf

  24. Azam, S.E., Mariani, S.: Dual estimation of partially observed nonlinear structural systems: a particle filter approach. Mech. Res. Commun. 46, 54–61 (2012)

    Article  Google Scholar 

  25. Azam, S.E., Bagherinia, M., Mariani, S.: Stochastic system identification via particle and sigma-point kalman filtering. Sci. Iran. 19 (4), 982–991 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin Madarshahian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Madarshahian, R., Caicedo, J.M. (2016). Metamodeling of Model Evidence. In: Atamturktur, S., Schoenherr, T., Moaveni, B., Papadimitriou, C. (eds) Model Validation and Uncertainty Quantification, Volume 3. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-29754-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29754-5_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29753-8

  • Online ISBN: 978-3-319-29754-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics