Skip to main content

Compressive Sensing Strategies for Multiple Damage Detection and Localization

  • Conference paper
  • First Online:
Dynamics of Civil Structures, Volume 2

Abstract

Structural health monitoring (SHM) techniques have been studied over the past few decades to detect the deficiencies affecting the performance of the structures. Detecting and localizing these deficiencies require long-term data collection from dense sensor networks which creates a challenging task for data transmission and processing. To address this problem, a comparative study of two image-based compressive sensing approaches for multiple damage localization is presented in this paper. The first methodology consists of compressive sampling from the sensor network in global and local formats. Then through statistical change point analysis on the sampled datasets, and Bayesian probability estimation, the study estimates the location of damage. The second algorithm implements compressive sensing to the subset of samples obtained from the sensor network space divided into blocks. The damage existence and location are determined by statistical hypothesis testing of Discrete Cosine Transformation (DCT) coefficients avoiding the original signal recovery. In order to evaluate the performance of both algorithms, multiple damage scenarios are simulated in steel gusset plate model. The comparison results are presented in terms of compression ratios and successful detection rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Matarazzo, T.J., Shahidi, S.G., Pakzad, S.N.: Exploring the efficiency of BIGDATA analyses in SHM. In: Proceedings of the 10th International Workshop on Structural Health Monitoring, Stanford, CA, vol. 2, pp. 2981–2989 (2015)

    Google Scholar 

  2. Matarazzo, T.J., Shahidi, G., Chang, M., Pakzad, S.N.: Are today’s SHM procedures suitable for tomorrow’s data? In: Proceedings of the Society of Experimental Mechanics IMAC XXXIII, Orlando, FL (2015)

    Google Scholar 

  3. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Donoho, D.L.: Compressed sensing. IEEE Trans. Inform. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Candès, E.J., Wakin, M.B.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008)

    Article  Google Scholar 

  6. Bao, Y., Beck, J.L., Li, H.: Compressive sampling for accelerometer signals in structural health monitoring. Struct. Health Monit. 10(3), 235–246 (2010)

    Google Scholar 

  7. Haile, M., Ghoshal, A.: Application of compressed sensing in full-field structural health monitoring. In: Proceedings of the SPIE 8346, Smart Sensor Phenomena, Technology, Networks and Systems Integration, San Diego, CA (2012)

    Google Scholar 

  8. Zhou, S., Bao, Y., Li, H.: Structural damage identification based on substructure sensitivity and l1 sparse regularization. In: SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, pp. 86923N–86923N. International Society for Optics and Photonics (2013)

    Google Scholar 

  9. Cortial, J., Farhat, C., Guibas, L.J., Rajashekhar, M.: Compressed sensing and time-parallel reduced-order modeling for structural health monitoring using a DDDAS. In: Computational Science–ICCS 2007, pp. 1171–1179. Springer, Heidelberg (2007)

    Google Scholar 

  10. Kirolos, S., Laska, J., Wakin, M., Duarte, M., Baron, D., Ragheb, T., Massoud, Y., Baraniuk, R.: Analog-to-information conversion via random demodulation. In: Design, Applications, Integration and Software, 2006 IEEE Dallas/CAS Workshop on, pp. 71–74. IEEE (2006)

    Google Scholar 

  11. Mascareñas, D., Cattaneo, A., Theiler, J., Farrar, C.: Compressed sensing techniques for detecting damage in structures. Struct. Health Monit. 12(4), 325–338 (2013)

    Article  Google Scholar 

  12. O’Connor, S.M., Lynch, J.P., Gilbert, A.C.: Compressed sensing embedded in an operational wireless sensor network to achieve energy efficiency in long-term monitoring applications. Smart Mater. Struct. 23(8), 085014 (2014)

    Article  Google Scholar 

  13. Davenport, M.A., Duarte, M.F., Wakin, M.B., Laska, J.N., Takhar, D., Kelly, K.F., Baraniuk, R.G.: The smashed filter for compressive classification and target recognition. In: Electronic Imaging 2007, pp. 64980H–64980H. International Society for Optics and Photonics (2007)

    Google Scholar 

  14. Yao, R., Pakzad, S.N., Venkitasubramaniam, P., Hudson, J.M.: Iterative spatial compressive sensing strategy for structural damage diagnosis as a BIG DATA problem. In: Proceedings of the Society of Experimental Mechanics IMAC XXXIII, vol. 2, pp. 185–190. Springer International Publishing (2015)

    Google Scholar 

  15. Shahidi, S.G., Pakzad, S.N.: A compressed sensing approach in structural damage identification. In: Proceedings of the 10th International Workshop on Structural Health Monitoring, Stanford, CA, vol. 2, pp. 2245–2252 (2015)

    Google Scholar 

  16. Gulgec, N.S., Shahidi, S.G., Pakzad S.N.: A comparative study of compressive sensing approaches for structural damage diagnosis. In: Proceedings of GeoStructures Congress, Phoenix, AZ (2016)

    Google Scholar 

  17. Nigro, M.B., Pakzad, S.N., Dorvash, S.: Localized structural damage detection: a change point analysis, (Blackwell Publishing). Comput. Aided Civ. Infrastruct. Eng. 29(6), 416–432 (2014). doi:10.1111/mice.12059

    Article  Google Scholar 

  18. Shahidi, S.G., Nigro, M.B., Pakzad, S.N., Pan, Y.: Structural damage detection and localization using multivariate regression models and two-sample control statistics. Struct. Infrastruct. Eng. 11(10), 1277–1293 (2015)

    Article  Google Scholar 

  19. Dorvash, S., Pakzad, S.N., Labuz, E.L.: Statistics based localized damage detection using vibration response. Smart Struct. Syst., Int. J. 14(2), 85–104 (2014). doi:10.12989/sss.2014.14.2.085,2014

    Article  Google Scholar 

  20. Dorvash, S., Pakzad, S.N., Labuz, E.L., Ricles, J.M., Hodgson, I.C.: Localized damage detection algorithm and implementation on a large-scale steel beam-to-column moment connection. Earthq. Spectra 31(3), 1543–1566 (2014). doi:10.1193/031613EQS069M

    Article  Google Scholar 

  21. Shahidi, G., Yao, R., Pakzad, S.N., Chamberlain, M., Nigro, M.B.: Data-driven structural damage identification using DIT. In: Proceedings of the Society of Experimental Mechanics IMAC XXXIII, Orlando, FL (2015)

    Google Scholar 

  22. Lloyd, S.P.: Least squares quantization in PCM. IEEE Trans. Inform. Theory 28(2), 129–137 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  23. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  24. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inform. Theory 53(12), 4655 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lam, E.Y., Goodman, J.W.: A mathematical analysis of the DCT coefficient distributions for images. IEEE Trans. Image Process. 9(10), 1661–1666 (2000)

    Article  MATH  Google Scholar 

  26. ABAQUS. Version “6.13,” Dassault systemes. Pawtucket, Rhode Island (2013)

    Google Scholar 

  27. Ibrahim, F.I.S.: Load Rating Evaluation of Gusset Plates in Truss Bridges, FHWA Design Guidance No. 1. (2008)

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank Jamie Hudson who created the FE model used in the simulation study. Research funding is partially provided by the National Science Foundation through Grant No. CMMI-1351537 by Hazard Mitigation and Structural Engineering program, and by a grant from the Commonwealth of Pennsylvania, Department of Community and Economic Development, through the Pennsylvania Infrastructure Technology Alliance (PITA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nur Sila Gulgec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Shahidi, S.G., Gulgec, N.S., Pakzad, S.N. (2016). Compressive Sensing Strategies for Multiple Damage Detection and Localization. In: Pakzad, S., Juan, C. (eds) Dynamics of Civil Structures, Volume 2. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-29751-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29751-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29750-7

  • Online ISBN: 978-3-319-29751-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics