Skip to main content

Model-Based Estimation of Hydrodynamic Forces on the Bergsoysund Bridge

  • Conference paper
  • First Online:

Abstract

Knowledge of excitation loads on bridges are important for reliable design. Load models are however prone to uncertainties. Force identification using dynamic response measured on full-scale structures can be used to reduce the uncertainty. In this contribution, numerical simulations are performed to examine the feasibility of force identification on the floating pontoon Bergsoysund Bridge. We present a practical case study in which wave excitation forces and motion induced forces are estimated using only acceleration output. The sensor network considered represents the monitoring system currently installed on the bridge. A reduced order model with 26 modes is used to represent the structure in the identification. Wave force time series are generated by Monte Carlo simulations, and the acceleration response is obtained from a frequency domain solution of the equations of motion. The generated acceleration data is polluted with noise and subsequently used for identification. The results show that a joint input-state estimation algorithm is able to adequately identify a subset of hydrodynamic forces acting on the pontoons in the presence of both measurement and model errors. The translational forces are identified with a larger accuracy than the moments. Lastly, considerations and improvements for an analysis with experimental field data are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Moe, G.: Design philosophy of floating bridges with emphasis on ways to ensure long life. J. Mar. Sci. Technol. 2(3), 182–189 (1997)

    Article  Google Scholar 

  2. Watanabe, E., Utsunomiya, T.: Analysis and design of floating bridges. Prog. Struct. Eng. Mater. 5(3), 127–144 (2003)

    Article  Google Scholar 

  3. Kvåle, K.A., Øiseth, O., Sigbjörnsson, R.: Modelling of the stochastic dynamic behaviour of the Bergsoysund bridge: an application of the power spectral density method. In: Proceedings of the 9th International Conference on Structural Dynamics, EURODYN (2014)

    Google Scholar 

  4. Kvåle, K.A., Øiseth, O., Rønnquist, A., Sigbjörnsson, R.: Modal analysis of a floating bridge without side-mooring. In: Dynamics of Civil Structures, vol. 2, pp. 127–136. Springer, Berlin (2015)

    Google Scholar 

  5. Lourens, E., Reynders, E., De Roeck, G., Degrande, G., Lombaert, G.: An augmented Kalman filter for force identification in structural dynamics. Mech. Syst. Signal Process. 27, 446–460 (2012)

    Article  Google Scholar 

  6. Azam, S.E., Chatzi, E., Papadimitriou, C.: A dual Kalman filter approach for state estimation via output-only acceleration measurements. Mech. Syst. Signal Process. 60, 866–886 (2015)

    Article  Google Scholar 

  7. Naets, F., Croes, J., Desmet, W.: An online coupled state/input/parameter estimation approach for structural dynamics. Comput. Methods Appl. Mech. Eng. 283, 1167–1188 (2015)

    Article  MathSciNet  Google Scholar 

  8. Hwang, J., Kareem, A., Kim, W.: Estimation of modal loads using structural response. J. Sound Vib. 326(3), 522–539 (2009)

    Article  Google Scholar 

  9. Hwang, J.-S., Lee, S.-G., Ji-hoon, P., Eun-Jong, Y.: Force identification from structural responses using Kalman filter. In: Institute of Materials Engineering, Volume 33, pp. 257–266, Melbourne, Australia (2009)

    Google Scholar 

  10. Ma, C.-K., Lin, D.-C.: Input forces estimation of a cantilever beam. Inverse Prob. Eng. 8(6), 511–528 (2000)

    Article  Google Scholar 

  11. Ma, C.K., Chang, J.M., Lin, D.C.: Input forces estimation of beam structures by an inverse method. J. Sound Vib. 259(2), 387–407 (2003)

    Article  Google Scholar 

  12. Hwang, J.-S., Kareem, A., Kim, H.: Wind load identification using wind tunnel test data by inverse analysis. J. Wind Eng. Ind. Aerodyn. 99(1), 18–26 (2011)

    Article  Google Scholar 

  13. Adams, R., Doyle, J.F.: Multiple force identification for complex structures. Exp. Mech. 42(1), 25–36 (2002)

    Article  Google Scholar 

  14. Liu, J.-J., Ma, C.-K., Kung, I.-C., Lin, D.-C.: Input force estimation of a cantilever plate by using a system identification technique. Comput. Methods Appl. Mech. Eng. 190(11), 1309–1322 (2000)

    Article  MATH  Google Scholar 

  15. Mao, Y., Zhang, W., Ouyang, H., Lin, J.: Input force estimation accounting for modeling errors and noise in responses. Arch. Appl. Mech. 85(7), 909–919 (2015)

    Article  Google Scholar 

  16. Liu, Y., Shepard, W.S. Jr.: Dynamic force identification based on enhanced least squares and total least-squares schemes in the frequency domain. J. Sound Vib. 282(1), 37–60 (2005)

    Article  Google Scholar 

  17. Parloo, E., Verboven, P., Guillaume, P., Van Overmeire, M.: Force identification by means of in-operation modal models. J. Sound Vib. 262(1), 161–173 (2003)

    Article  Google Scholar 

  18. Han, S.L., Kinoshita, T.: Investigation of a stochastic inverse method to estimate an external force: applications to a wave-structure interaction. Math. Probl. Eng. 175036, 25 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Gillijns, S., De Moor, B.: Unbiased minimum-variance input and state estimation for linear discrete-time systems with direct feedthrough. Automatica 43(5), 934–937 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lourens, E., Papadimitriou, C., Gillijns, S., Reynders, E., De Roeck, G., Lombaert, G.: Joint input-response estimation for structural systems based on reduced-order models and vibration data from a limited number of sensors. Mech. Syst. Signal Process. 29, 310–327 (2012)

    Article  Google Scholar 

  21. Maes, K., Lourens, E., De Roeck, G., Lombaert, G.: General conditions for instantaneous system inversion in structural dynamics. In: Proceedings of the 5th International Conference on Structural Engineering, Mechanics and Computation, SEMC, pp. 43–48 (2013)

    Google Scholar 

  22. Maes, K., Lourens, E., Van Nimmen, K., Reynders, E., De Roeck, G., Lombaert, G.: Design of sensor networks for instantaneous inversion of modally reduced order models in structural dynamics. Mech. Syst. Signal Process. 52, 628–644 (2014)

    Google Scholar 

  23. Nord, T.S., Lourens, E., Øiseth, O., Metrikine, A.: Model-based force and state estimation in experimental ice-induced vibrations by means of Kalman filtering. Cold Reg. Sci. Technol. 111, 13–26 (2015)

    Article  Google Scholar 

  24. Taghipour, R., Perez, T., Moan, T.: Time-domain hydroelastic analysis of a flexible marine structure using state-space models. J. Offshore Mech. Arct. Eng. 131(1), 011603 (2009)

    Article  Google Scholar 

  25. Maes, K., Lourens, E., Van Nimmen, K., Reynders, E., Van den Broeck, P., Guillaume, P., De Roeck, G., Lombaert, G.: Verification of joint input-state estimation by in situ measurements on a footbridge. In: Proceedings of the 9th International Workshop on Structural Health Monitoring, vol. 1, pp. 343–350 (2013)

    Google Scholar 

  26. Pierson, W.J. Jr., Moskowitz, L.: A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. J. Geophys. Res. 69, 5181–5190 (1964)

    Article  Google Scholar 

  27. National Academy of Sciences: Ocean Wave Spectra: Proceedings of a Conference, Easton, Maryland May 1961. Prentice Hall (1963)

    Google Scholar 

  28. Taghipour, R., Perez, T., Moan, T.: Hybrid frequency–time domain models for dynamic response analysis of marine structures. Ocean Eng. 35(7), 685–705 (2008)

    Article  Google Scholar 

  29. van der Male, P., Lourens, E.: Operational vibration-based response estimation for offshore wind lattice structures. In: Proceedings of IMAC XXXIII International Modal Analysis Conference, pp. 83–96 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Øyvind Wiig Petersen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Petersen, Ø.W., Øiseth, O., Nord, T.S., Lourens, EM. (2016). Model-Based Estimation of Hydrodynamic Forces on the Bergsoysund Bridge. In: Pakzad, S., Juan, C. (eds) Dynamics of Civil Structures, Volume 2. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-29751-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29751-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29750-7

  • Online ISBN: 978-3-319-29751-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics