Skip to main content

Inelastic Base Shear Reconstruction from Sparse Acceleration Measurements of Buildings

  • Conference paper
  • First Online:
Dynamics of Civil Structures, Volume 2

Abstract

This paper presents a novel method for recovering base shear forces of building structures with unknown nonlinearities from sparse seismic-response measurements of floor accelerations. The method requires only direct matrix calculations (factorizations and multiplications); no iterative trial-and-error methods are required. The method requires a mass matrix, or at least an estimate of the floor masses. A stiffness matrix may be used, but is not necessary. Essentially, the method operates on a matrix of incomplete measurements of floor accelerations. In the special case of complete floor measurements of systems with linear dynamics and real modes, the principal components of this matrix are the modal responses. In the more general case of partial measurements and nonlinear dynamics, the method extracts a number of linearly-dependent components from Hankel matrices of measured horizontal response accelerations, assembles these components row-wise and extracts principal components from the singular value decomposition of this large matrix of linearly-dependent components. These principal components are then interpolated between floors in a way that minimizes the curvature energy of the interpolation. This interpolation step can make use of a reduced-order stiffness matrix, a backward difference matrix or a central difference matrix. The measured and interpolated floor acceleration components at all floors are then assembled and multiplied by a mass matrix. A sum (or weighted sum) of the resulting vector of inertial forces gives the base shear. The proposed algorithm is suitable for linear and nonlinear hysteretic structural systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abe, M., Fujino, Y., Yoshida, J.: Dynamic behaviour and seismic performance of base-isolated bridges in observed seismic records. In: Proceedings of 12th World Conference on Earthquake Engineering (2000)

    Google Scholar 

  2. Ahmadi, G., Fan, F., Noori, M.: A thermodynamically consistent model for hysteretic materials. Iran. J. Sci. Technol. 21(3), 257–278 (1997)

    Google Scholar 

  3. Alhan, C., Gavin, H.: A parametric study of linear and non-linear passively damped seismic isolation systems for buildings. Eng. Struct. 26(4), 485–497 (2004)

    Article  Google Scholar 

  4. Cadzow, J.A.: Signal enhancement-a composite property mapping algorithm. IEEE Trans. Acoust. Speech Signal Process. 36(1), 49–62 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Celebi, M.: Successful performance of a base-isolated hospital building during the 17 January 1994 Northridge earthquake. Struct. Des. Tall Build. 5, 95–109 (1996)

    Article  Google Scholar 

  6. Chaudhary, M., Abe, M., Fujino, Y.: Identification of soil–structure interaction effect in base-isolated bridges from earthquake records. Soil Dyn. Earthq. Eng. 21(8), 713–725 (2001)

    Article  Google Scholar 

  7. Chaudhary, M.T.A., Abe, M., Fujino, Y., Yoshida, J.: System identification of two base-isolated bridges using seismic records. J. Struct. Eng. 126(10), 1187–1195 (2000)

    Article  Google Scholar 

  8. Ding, Y., Law, S., Wu, B., Xu, G., Lin, Q., Jiang, H., Miao, Q.: Average acceleration discrete algorithm for force identification in state space. Eng. Struct. 56, 1880–1892 (2013)

    Article  Google Scholar 

  9. Erlicher, S., Point, N.: Thermodynamic admissibility of Bouc-Wen type hysteresis models. Comptes Rendus Méc. 332(1), 51–57 (2004)

    Article  MATH  Google Scholar 

  10. Furukawa, T., Ito, M., Izawa, K., Noori, M.N.: System identification of base-isolated building using seismic response data. J. Eng. Mech. 131(3), 268–275 (2005)

    Article  Google Scholar 

  11. Gavin, H.P., Scruggs, J.T.: Constrained optimization using lagrange multipliers. CEE 201L. Duke University (2012)

    Google Scholar 

  12. Golyandina, N., Nekrutkin, V., Zhigljavsky, A.A.: Analysis of Time Series Structure: SSA and Related Techniques. CRC, New York (2001)

    Book  MATH  Google Scholar 

  13. Huang, M.-C., Wang, Y.-P., Lin, T.-K., Chen, Y.-H.: Development of physical-parameter identification procedure for in-situ buildings with sliding-type isolation system. J. Sound Vib. 332(13), 3315–3328 (2013)

    Article  Google Scholar 

  14. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 454, pp. 903–995. The Royal Society (1998)

    Google Scholar 

  15. Hyvärinen, A.: Complexity pursuit: separating interesting components from time series. Neural Comput. 13(4), 883–898 (2001)

    Article  MATH  Google Scholar 

  16. Ismail, M., Ikhouane, F., Rodellar, J.: The hysteresis bouc-wen model, a survey. Arch. Comput. Meth. Eng. 16(2), 161–188 (2009)

    Article  MATH  Google Scholar 

  17. Juang, J.-N., Pappa, R.S.: An eigensystem realization algorithm for modal parameter identification and model reduction. J. Guid. Control. Dyn. 8(5), 620–627 (1985)

    Article  MATH  Google Scholar 

  18. Juang, J.-N., Phan, M., Horta, L.G., Longman, R.W.: Identification of observer/kalman filter Markov parameters-theory and experiments. J. Guid. Control. Dyn. 16(2), 320–329 (1993)

    Google Scholar 

  19. Kampas, G., Makris, N.: Time and frequency domain identification of seismically isolated structures: advantages and limitations. Earthq. Struct. 3(3–4), 249–270 (2012)

    Article  Google Scholar 

  20. Kijewski, T., Kareem, A.: Wavelet transforms for system identification in civil engineering. Comput.-Aided Civ. Infrastruct. Eng. 18(5), 339–355 (2003)

    Article  Google Scholar 

  21. Ljung, L.: Prediction error estimation methods. Circuits Syst. Signal Process. 21(1), 11–21 (2002)

    Article  MathSciNet  Google Scholar 

  22. Loh, C.-H., Weng, J.-H., Chen, C.-H., Lu, K.-C.: System identification of mid-story isolation building using both ambient and earthquake response data. Struct. Control. Health Monit. 20(2), 139–155 (2013)

    Article  Google Scholar 

  23. Mahmoudvand, R., Zokaei, M.: On the singular values of the Hankel matrix with application in singular spectrum analysis. Chilean J. Stat. 3(1), 43–56 (2012)

    MathSciNet  Google Scholar 

  24. Markovsky, I.: Structured low-rank approximation and its applications. Automatica 44(4), 891–909 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Markovsky, I.: Low Rank Approximation: Algorithms, Implementation, Applications. Springer Science & Business Media, New York (2011)

    MATH  Google Scholar 

  26. Nagarajaiah, S., Xiaohong, S.: Response of base-isolated USC hospital building in Northridge earthquake. J. Struct. Eng. 126(10), 1177–1186 (2000)

    Article  Google Scholar 

  27. Oliveto, N.D., Scalia, G., Oliveto, G.: Time domain identification of hybrid base isolation systems using free vibration tests. Earthq. Eng. Struct. Dyn. 39(9), 1015–1038 (2010)

    Google Scholar 

  28. Peeters, B., De Roeck, G.: Reference-based stochastic subspace identification for output-only modal analysis. Mech. Syst. Signal Process. 13(6), 855–878 (1999)

    Google Scholar 

  29. Siringoringo, D.M., Fujino, Y.: Seismic response analyses of an asymmetric base-isolated building during the 2011 great east Japan (Tohoku) earthquake. Struct. Control. Health Monit. 22(1), 71–90 (2015)

    Article  Google Scholar 

  30. Staszewski, W.: Identification of damping in MDOF systems using time-scale decomposition. J. Sound Vib. 203(2), 283–305 (1997)

    Article  Google Scholar 

  31. Stewart, J.P., Conte, J.P., Aiken, I.D.: Observed behavior of seismically isolated buildings. J. Struct. Eng. 125(9), 955–964 (1999)

    Article  Google Scholar 

  32. Takewaki, I., Nakamura, M.: Stiffness-damping simultaneous identification under limited observation. J. Eng. Mech. 131(10), 1027–1035 (2005)

    Article  Google Scholar 

  33. Takewaki, I., Nakamura, M.: Temporal variation in modal properties of a base-isolated building during an earthquake. J. Zhejiang Univ. Sci. A 11(1), 1–8 (2010)

    Article  MATH  Google Scholar 

  34. Trefethen, L.N., Bau III, D.: Numerical Linear Algebra, vol. 50. SIAM (1997)

    Google Scholar 

  35. Xu, C., Chase, J.G., Rodgers, G.W.: Physical parameter identification of nonlinear base-isolated buildings using seismic response data. Comput. Struct. 145, 47–57 (2014)

    Article  Google Scholar 

  36. Yang, J.N., Lei, Y., Pan, S., et al.: System identification of linear structures based on Hilbert-Huang spectral analysis. part 1: normal modes. Earthq. Eng. Struct. Dyn. 32(9), 1443–1468 (2003)

    Google Scholar 

  37. Yang, Y., Nagarajaiah, S.: Output-only modal identification with limited sensors using sparse component analysis. J. Sound Vib. 332(19), 4741–4765 (2013)

    Article  Google Scholar 

  38. Yoshimoto, R.: Damage detection of base-isolated buildings using multi-inputs multi-outputs subspace identification. Ph.D Thesis, Department of System Design Engineering, Keio University (1776)

    Google Scholar 

Download references

Acknowledgements

This material is based in part upon work supported by the National Science Foundation under Grant Number CMMI-1258466. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henri Gavin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Yin, B., Gavin, H. (2016). Inelastic Base Shear Reconstruction from Sparse Acceleration Measurements of Buildings. In: Pakzad, S., Juan, C. (eds) Dynamics of Civil Structures, Volume 2. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-29751-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29751-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29750-7

  • Online ISBN: 978-3-319-29751-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics