Skip to main content

Development of an Acoustic Sensing Based SHM Technique for Wind Turbine Blades

  • Conference paper
  • First Online:
Dynamics of Civil Structures, Volume 2

Abstract

Wind turbine blades are exposed to continuously-varying aerodynamic forces, gravitational loads, lightning strikes, and weather conditions that lead the blade damage such as leading and trailing edge splits, cracks and holes. In this study, actively-controlled acoustic sources were utilized in order to excite the blade’s cavity structure from internal. The blade damage manifests itself in changes to the acoustic cavity frequency response functions and to the blade acoustic transmission loss. Proposed research examines the use of wireless sensing approach for detecting surface damage of the blades, while they are rotating when wind turbine is operational. A subscale wind turbine was built and used for carrying out preliminary experimental studies. Sensing system and strategy was benchmarked both using computational (FEM) model of the blades as well as the experimental results in the lab.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U.S. Wind Industry Market Reports, AWEA (2015)

    Google Scholar 

  2. Arora, V., Wijnant, Y.H., de Boer, A.: Acoustic-based damage detection method. Appl. Acoust. 80, 23–27 (2014)

    Article  Google Scholar 

  3. Yang, W.: Testing and Condition Monitoring of Composite Wind Turbine Blades. Recent Advances in Composite Materials for Wind Turbine Blade, pp. 147–169. World Academic, Hong Kong (2013)

    Google Scholar 

  4. Hyers, R.W., McGowan, J.G., Sullivan, K.L., Manwell, J.F., Syrett, B.C.: Condition monitoring and prognosis of utility scale wind turbines. Energ. Mater. 1(3), 187–203 (2006)

    Article  Google Scholar 

  5. Kahn-Jetter, Z.L., Chu, T.C.: Three-dimensional displacement measurements using digital image correlation and photogrammic analysis. Exp. Mech. 30(1), 10–16 (1990)

    Article  Google Scholar 

  6. Ozbek, M., Rixen, D.J.: Optical measurements and operational modal analysis on a large wind turbine: lessons learned. Shock Vib. 5, 257–276 (2011)

    Google Scholar 

  7. Ozbek, M., Rixen, D.J., Erne, O., Sanow, G.: Feasibility of monitoring large wind turbines using photogrammetry. Third Int. Conf. Sustainable Energy Environ. Protect SEEP 2009 35(12), 4802–4811 (2010)

    Google Scholar 

  8. Ozbek, M., Mengt, F., Rixen, D.J., Van Tooren, M.J.L.: Identification of the dynamics of large wind turbines by using photogrammetry. Struct. Dyn. Renew. Energy 1, 351–359 (2011)

    Google Scholar 

  9. Ozbek, M., Rixen, D.J.: Operational modal analysis of a 2.5 mw wind turbine using optical measurement techniques and strain gauges. Wind Energ. 16, 367–381 (2013)

    Article  Google Scholar 

  10. Carr, J., Baqersad, J., Niezrecki, C., Avitabile, P.: Dynamic stress-strain on turbine blade using digital image correlation techniques, Part 1—static calibration. Proceedings of the Thirtieth International Modal Analysis Conference, Jacksonville (Feb 2012)

    Google Scholar 

  11. Carr, J., Baqersad, J., Niezrecki, C., Avitabile, P.: Dynamic stress-strain on turbine blade using digital image correlation techniques, Part 2—dynamic measurements. Proceedings of the Thirtieth International Modal Analysis Conference, Jacksonville (Feb 2012)

    Google Scholar 

  12. Niezrecki, C., Avitable, P., Chen, J., Sherwood, J., Lundstorm, T., LeBlanc, B., Hughes, S., Desmond, M., Beattie, A., Rumsey, M., Klute, S.M., Pedrazzani, R., Werlink, R., Newman, J.: Inspection and monitoring of wind turbine blade-embedded wave defects during fatigue testing. Struct. Heal. Monit. 13, 629–643 (2014)

    Article  Google Scholar 

  13. Aizawa, K., Poozesh, P., Niezrecki, C., Baqersad, J., Inalpolat, M., Heilmann, G.: An acoustic-array based structural health monitoring technique for wind turbine blades. Struct. Heal. Monit. Inspect. Adv. Mater. Aerospace Civil Infrastruct. SPIE 9437, 1–17 (2015)

    Google Scholar 

  14. Tipperman, J., Lanza di Scalea, F.: Experiments on a wind turbine blade testing an indication for damage using the casual and anti-casual Green’s function reconstructed from a diffuse field. SPIE 9064, 1–1 (2014)

    Google Scholar 

  15. Boukabache, H., Escriba, C., Zedek, S., Fourniols, J.: Wavelet decomposition based diagnostic for structural health monitoring on metallic aircrafts: case of crack triangulation and corrosion detection. Int. J. Prognostics Health Manag., ISSN 2153-2648 (2013)

    Google Scholar 

  16. Aizawa, K., Niezrecki, C.: Wind turbine blade health monitoring using acoustic beamforming techniques. J. Acoust. Soc. Am. 135(4), 2392–2393 (2014)

    Google Scholar 

  17. Pierro, E., Mucchi, E., Soria, L., Vecchio, A.: On the vibro-acoustical operational modal analysis of a helicopter cabin. Mech. Syst. Signal Process. 23, 1205–1217 (2009)

    Article  Google Scholar 

  18. Farshidi, R., Trieu, D., Park, S.S., Freiheit, T.: Non-contact experimental modal analysis using air excitation and a microphone array. Measurement 43, 755–765 (2010)

    Article  Google Scholar 

  19. Rumsey, M.A., Paquette, J.A.: Structural health monitoring of wind turbine blades. Proceedings of the SPIE Smart Sensor Phenomena, Technology, Networks, and System (2008)

    Google Scholar 

  20. Sundaresan, M.J., Schulz, M.J., Ghoshal, A.: Structural health monitoring static test of a wind turbine blade. National Renewable Energy Laboratory Report (1999)

    Google Scholar 

  21. Fazenda, B.M.: Acoustic based condition monitoring of turbine blades. ICSV 18, Rio de Janeiro, Brazil, pp. 1–8 (2011)

    Google Scholar 

  22. Fazenda, B.M., Comboni, D.: Acoustic condition monitoring of wind turbines: tip faults. The 9th International Conference on Condition Monitoring and Machinery Failure Prevention Technologies, London (2012)

    Google Scholar 

  23. Stearman, R.O., Schulz, G.H., Rohre, S.M.: Aircraft damage detection from acoustic and noise impressed signals found by a cockpit voice recorder. J. Acoust. Soc. Am. 101, 3085 (1997)

    Article  Google Scholar 

  24. Lam, H.F., Ng, C.T., Lee, Y.Y., Sun, H.Y.: System identification of an enclosure with leakages using a probabilistic approach. J. Sound Vibr. 322, 756–771 (2009)

    Article  Google Scholar 

  25. Kim, S., Adams, D.E., Sohn, H., Rodriguez-Rivera, G., Myrent, N., Bond, R., Vitek, J., Carr, S., Grama, A., Meyer, J.J.: Crack detection technique for operating wind turbine blades using vibro-acoustic modulation. Struct. Heal. Monit. 13(6), 660–670 (2014)

    Article  Google Scholar 

  26. Canturk, R., Inalpolat, M.: A computational acoustic interrogation of wind turbine blades with damage. Comsol Conference, Boston (2015)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the help from Elizabeth Slavkovsky and Patrick Logan of The Structural Dynamics and Acoustic Systems Laboratory at University of Massachusetts Lowell, during some of the experimental stages of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Inalpolat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Canturk, R., Inalpolat, M. (2016). Development of an Acoustic Sensing Based SHM Technique for Wind Turbine Blades. In: Pakzad, S., Juan, C. (eds) Dynamics of Civil Structures, Volume 2. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-29751-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29751-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29750-7

  • Online ISBN: 978-3-319-29751-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics