Skip to main content

Formation and Microstructural Regulation of Nanoporous Metals

  • Chapter
  • First Online:
Nanoporous Metals for Advanced Energy Technologies

Abstract

In the past 15 years, dealloying has been growing into the most important method to fabricate nanoporous metals. In this chapter, we will address the dealloying-driven formation of nanoporous metals, the methods to characterize the microstructures of nanoporous metals, as well as the strategies to regulate the microstructures of nanoporous metals. Dealloying is a common corrosion process, during which the less noble element(s) is selectively etched away and the more noble element(s) is retained to form a nanoporous structure. First, we briefly discuss the history of dealloying, including “depletion gilding” at the time of pre-Columbian Central America and the early Middle Ages in European and Near Eastern, Raney® metals dealloyed from Al-based precursors in 1920s, and dealloying to form functionalized nanoporous metals at the beginning of this century. Additionally, in the most time of last century, people were concerned with dealloying mainly from the viewpoint of corrosion/protection. To understand the dealloying mechanisms is crucial to the design/fabrication of nanoporous metals. We then outline the related mechanisms being operated in the dealloying process. Since the 1960s, in situ/ex situ experiments and computer simulations have been performed to unveil the formation mechanism of nanoporous metals during dealloying, considering the selective dissolution of the less noble element(s), the surface diffusion of the more noble element(s), the critical potential, and the parting limit. The influence of anions (like halide ions) and the phase constitution should also be taken into consideration. Nanoporous metals exhibit a three-dimensional bicontinuous ligament (metal)-channel (void) structure. Many techniques can be used to characterize the microstructures of nanoporous metals, including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM, scanning TEM, scanning tunneling microscopy (STM), energy dispersive X-ray analysis, small angle neutron scattering (SANS), and so forth. Three-dimensional tomographic reconstruction is also popular to reveal the interior microstructures of nanoporous metals. In addition, the methods to evaluate the characteristic length scale and the specific surface area of nanoporous metals are also reviewed. In the last section of this chapter, we discuss how to regulate the microstructures/compositions/morphologies of nanoporous metals. First, we talk about the design of precursors for dealloying, considering the composition (elements), phase constitution, crystallinity, and microalloying. Second, the microstructural regulation of nanoporous metals can be achieved by controlling over the dealloying parameters, including chemical/electrochemical dealloying, the dealloying solution, temperature, the applied potential, the dealloying step (two-step or multistep), the effect of atmosphere, and dealloying in nonaqueous media. The post-dealloying treatment has also been briefly outlined. Third, we discuss the strategies which are often adopted to further modify nanoporous metals, based upon their potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Erlebacher J, Aziz MJ, Karma A, Dimitrov N, Sieradzki K (2001) Evolution of nanoporosity in dealloying. Nature 410(6827):450–453

    Article  Google Scholar 

  2. Forty A (1979) Corrosion micromorphology of noble metal alloys and depletion gilding. Nature 282:597–598

    Article  Google Scholar 

  3. Raney M (1925) Method of preparing catalytic material. US Patent 1,563,587

    Google Scholar 

  4. Raney M (1940) Catalysts from alloys. Ind Eng Chem 32(9):1199–1203

    Article  Google Scholar 

  5. Huber GW, Shabaker J, Dumesic J (2003) Raney Ni–Sn catalyst for H2 production from biomass-derived hydrocarbons. Science 300(5628):2075–2077

    Article  Google Scholar 

  6. Parthasarathi A, Polan NW (1982) Stress corrosion of Cu–Zn and Cu–Zn–Ni alloys: the role of dealloying. Metall Trans A 13(11):2027–2033

    Article  Google Scholar 

  7. Pryor M, Giam KK (1982) The effect of arsenic on the dealloying of α-brass. J Electrochem Soc 129(10):2157–2163

    Article  Google Scholar 

  8. Cassagne T, Flanagan W, Lichter B (1986) On the failure mechanism of chemically embrittled Cu3Au single crystals. Metall Trans A 17(4):703–710

    Article  Google Scholar 

  9. Sieradzki K, Kim J, Cole A, Newman R (1987) The relationship between dealloying and transgranular stress-corrosion cracking of Cu–Zn and Cu–Al Alloys. J Electrochem Soc 134(7):1635–1639

    Article  Google Scholar 

  10. Getsov L, Rybnikov A, Pogrebnyak A, Bavel’skii D (1989) Effect of surface dealloying on the endurance of heat-resistant alloys. Strength Mater 21(2):170–174

    Article  Google Scholar 

  11. Buchheit R, Grant R, Hlava P, McKenzie B, Zender G (1997) Local dissolution phenomena associated with S phase (Al2CuMg) particles in aluminum alloy 2024‐T3. J Electrochem Soc 144(8):2621–2628

    Article  Google Scholar 

  12. Guillaumin V, Mankowski G (1998) Localized corrosion of 2024 T351 aluminium alloy in chloride media. Corros Sci 41(3):421–438

    Article  Google Scholar 

  13. Dimitrov N, Mann J, Vukmirovic M, Sieradzki K (2000) Dealloying of Al2CuMg in alkaline media. J Electrochem Soc 147(9):3283–3285

    Article  Google Scholar 

  14. Pickering H, Swann P (1963) Electron metallography of chemical attack upon some alloys susceptible to stress corrosion cracking. Corrosion 19(11):373t–389t

    Article  Google Scholar 

  15. Keir D, Pryor M (1980) The dealloying of copper–manganese alloys. J Electrochem Soc 127(10):2138–2144

    Article  Google Scholar 

  16. Oppenheim IC, Trevor DJ, Chidsey CE, Trevor PL, Sieradzki K (1991) In situ scanning tunneling microscopy of corrosion of silver–gold alloys. Science 254(5032):687–689

    Article  Google Scholar 

  17. Pickering H, Wagner C (1967) Electrolytic dissolution of binary alloys containing a noble metal. J Electrochem Soc 114(7):698–706

    Article  Google Scholar 

  18. Swann P (1969) Mechanism of corrosion tunnelling with special reference to Cu3Au. Corrosion 25(4):147–150

    Article  Google Scholar 

  19. Forty A, Durkin P (1980) A micromorphological study of the dissolution of silver-gold alloys in nitric acid. Philos Mag A 42(3):295–318

    Article  Google Scholar 

  20. Forty A, Rowlands G (1981) A possible model for corrosion pitting and tunneling in noble-metal alloys. Philos Mag A 43(1):171–188

    Article  Google Scholar 

  21. Pryor M, Fister J (1984) The mechanism of dealloying of copper solid solutions and intermetallic phases. J Electrochem Soc 131(6):1230–1235

    Article  Google Scholar 

  22. Kaesche H (1988) Microtunnelling during selective alloy dissolution and during pitting. Mater Corros 39(4):153–161

    Article  Google Scholar 

  23. Sieradzki K, Corderman R, Shukla K, Newman R (1989) Computer simulations of corrosion: selective dissolution of binary alloys. Philos Mag A 59(4):713–746

    Article  Google Scholar 

  24. Moffat TP, Fan FRF, Bard AJ (1991) Electrochemical and scanning tunneling microscopic study of dealloying of Cu3Au. J Electrochem Soc 138(11):3224–3235

    Article  Google Scholar 

  25. Sieradzki K (1993) Curvature effects in alloy dissolution. J Electrochem Soc 140(10):2868–2872

    Article  Google Scholar 

  26. Smith A, Tran T, Wainwright M (1999) Kinetics and mechanism of the preparation of Raney® copper. J Appl Electrochem 29(9):1085–1094

    Article  Google Scholar 

  27. Erlebacher J (2004) An atomistic description of dealloying. J Electrochem Soc 151(10):C614

    Article  Google Scholar 

  28. Wagner K, Brankovic S, Dimitrov N, Sieradzki K (1997) Dealloying below the critical potential. J Electrochem Soc 144(10):3545–3555

    Article  Google Scholar 

  29. Dursun A, Pugh DV, Corcoran SG (2005) Probing the dealloying critical potential. J Electrochem Soc 152(2):B65

    Article  Google Scholar 

  30. Renner F, Stierle A, Dosch H, Kolb D, Lee T-L, Zegenhagen J (2006) Initial corrosion observed on the atomic scale. Nature 439(7077):707–710

    Article  Google Scholar 

  31. Pareek A, Borodin S, Bashir A, Ankah GN, Keil P, Eckstein GA et al (2011) Initiation and inhibition of dealloying of single crystalline Cu3Au (111) surfaces. J Am Chem Soc 133(45):18264–18271

    Article  Google Scholar 

  32. Ankah GN, Meimandi S, Renner FU (2013) Dealloying of Cu3Pd single crystal surfaces. J Electrochem Soc 160(8):C390–C395

    Article  Google Scholar 

  33. Kamundi M, Bromberg L, Fey E, Mitchell C, Fayette M, Dimitrov N (2012) Impact of structure and composition on the dealloying of AuxAg(1–x)alloys on the nanoscale. J Phys Chem C 116(26):14123–14133

    Article  Google Scholar 

  34. Oezaslan M, Heggen M, Strasser P (2012) Size-dependent morphology of dealloyed bimetallic catalysts: linking the nano to the macro scale. J Am Chem Soc 134(1):514–524

    Article  Google Scholar 

  35. Callejas-Tovar R, Diaz CA, de la Hoz JMM, Balbuena PB (2013) Dealloying of platinum-based alloy catalysts: kinetic Monte Carlo simulations. Electrochim Acta 101:326–333

    Article  Google Scholar 

  36. Chen Q, Sieradzki K (2013) Spontaneous evolution of bicontinuous nanostructures in dealloyed Li-based systems. Nat Mater 12(12):1102–1106

    Article  Google Scholar 

  37. Cui C, Gan L, Heggen M, Rudi S, Strasser P (2013) Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat Mater 12(8):765–771

    Article  Google Scholar 

  38. Li X, Chen Q, McCue I, Snyder J, Crozier P, Erlebacher J et al (2014) Dealloying of noble-metal alloy nanoparticles. Nano Lett 14(5):2569–2577

    Article  Google Scholar 

  39. Rudi S, Gan L, Cui C, Gliech M, Strasser P (2015) Electrochemical dealloying of bimetallic ORR nanoparticle catalysts at constant electrode potentials. J Electrochem Soc 162(4):F403–F409

    Article  Google Scholar 

  40. Han B, Carlton C, Kongkanand A, Kukreja R, Theobald B, Gan L, et al (2015) Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells. Energy Environ Sci 8(1):258–266

    Google Scholar 

  41. Petegem SV, Brandstetter S, Maass R, Hodge AM, El-Dasher BS, Jr Biener et al (2009) On the microstructure of nanoporous gold: an x-ray diffraction study. Nano Lett 9(3):1158–1163

    Article  Google Scholar 

  42. Dotzler CJ, Ingham B, Illy BN, Wallwork K, Ryan MP, Toney MF (2011) In situ observation of strain development and porosity evolution in nanoporous gold foils. Adv Funct Mater 21(20):3938–3946

    Article  Google Scholar 

  43. Galinski H, Ryll T, Schlagenhauf L, Rechberger F, Ying S, Gauckler LJ et al (2011) Dealloying of platinum-aluminum thin films: dynamics of pattern formation. Phys Rev Lett 107(22)

    Google Scholar 

  44. Ye X-L, Lu N, Li X-J, Du K, Tan J, Jin H-J (2014) Primary and secondary dealloying of Au(Pt)-Ag: structural and compositional evolutions, and volume shrinkage. J Electrochem Soc 161(12):C517–C526

    Article  Google Scholar 

  45. Chen-Wiegart Y-cK, Wang S, Lee W-K, McNulty I, Voorhees PW, Dunand DC (2013) In situ imaging of dealloying during nanoporous gold formation by transmission X-ray microscopy. Acta Mater 61(4):1118–1125

    Google Scholar 

  46. Chen-Wiegart Y-cK, Wang S, McNulty I, Dunand DC (2013) Effect of Ag–Au composition and acid concentration on dealloying front velocity and cracking during nanoporous gold formation. Acta Mater 61(15):5561–5570

    Google Scholar 

  47. Sethuraman VA, Vairavapandian D, Lafouresse MC, Maark TA, Karan N, Sun S et al (2015) Role of elastic strain on electrocatalysis of oxygen reduction reaction on Pt. J Phys Chem C 119(33):19042–19052

    Article  Google Scholar 

  48. Martin H, Carro P, Hernández Creus A, Morales J, Fernandez G, Esparza P et al (2000) Interplay of surface diffusion and surface tension in the evolution of solid/liquid interfaces. Dealloying of β-brass in aqueous sodium chloride. J Phys Chem B 104(34):8229–8237

    Article  Google Scholar 

  49. Zhang Q, Zhang Z (2010) On the electrochemical dealloying of Al-based alloys in a NaCl aqueous solution. Phys Chem Chem Phys 12(7):1453–1472

    Article  Google Scholar 

  50. Ji H, Frenzel J, Qi Z, Wang X, Zhao C, Zhang Z et al (2010) An ultrafine nanoporous bimetallic Ag–Pd alloy with superior catalytic activity. CrystEngComm 12(12):4059

    Article  Google Scholar 

  51. Starr CA, Buttry DA (2014) Electrochemical dealloying of gold–silver nanoparticles—selective dissolution of the less and more noble species. In: Leonte OM, Mustain WE (eds) Nanotechnology. ECS transactions 582014. pp 19–26

    Google Scholar 

  52. Chen T, Liu Z, Lu W, Zhou X, Ma H (2011) Fabrication of free-standing nanoporous silver by selectively dissolving gold from gold–silver alloys via a novel converse dealloying method. Electrochem Commun 13(10):1086–1089

    Article  Google Scholar 

  53. Zhang Q, Wang X, Qi Z, Wang Y, Zhang Z (2009) A benign route to fabricate nanoporous gold through electrochemical dealloying of Al–Au alloys in a neutral solution. Electrochim Acta 54(26):6190–6198

    Article  Google Scholar 

  54. Zhao C, Wang X, Qi Z, Ji H, Zhang Z (2010) On the electrochemical dealloying of Mg–Cu alloys in a NaCl aqueous solution. Corros Sci 52(12):3962–3972

    Article  Google Scholar 

  55. Hakamada M, Mabuchi M (2006) Nanoporous gold prism microassembly through a self-organizing route. Nano Lett 6(4):882–885

    Article  Google Scholar 

  56. Renner FU, Eckstein GA, Lymperakis L, Dakkouri-Baldauf A, Rohwerder M, Neugebauer J et al (2011) In situ scanning tunneling microscopy study of selective dissolution of Au3Cu and Cu3Au (001). Electrochim Acta 56(4):1694–1700

    Article  Google Scholar 

  57. Zhang Z, Zhang C, Sun J, Kou T (2012) Influence of anion species on electrochemical dealloying of single-phase Al2Au alloy in sodium halide solutions. RSC Adv 2(10):4481

    Article  Google Scholar 

  58. Xu J, Wang Y, Zhang Z (2012) Potential and concentration dependent electrochemical dealloying of Al2Au in sodium chloride solutions. J Phys Chem C 116(9):5689–5699

    Article  Google Scholar 

  59. Ankah GN, Pareek A, Cherevko S, Topalov AA, Rohwerder M, Renner FU (2012) The influence of halides on the initial selective dissolution of Cu3Au (111). Electrochim Acta 85:384–392

    Article  Google Scholar 

  60. Pugh D, Dursun A, Corcoran S (2003) Formation of nanoporous platinum by selective dissolution of Cu from Cu 0.75 Pt 0.25. J Mater Res 18(01):216–221

    Article  Google Scholar 

  61. Zhang Z, Wang Y, Qi Z, Lin J, Bian X (2009) Nanoporous gold ribbons with bimodal channel size distributions by chemical dealloying of Al–Au Alloys. J Phys Chem C 113(4):1308–1314

    Article  Google Scholar 

  62. Zhang Z, Wang Y, Qi Z, Somsen C, Wang X, Zhao C (2009) Fabrication and characterization of nanoporous gold composites through chemical dealloying of two phase Al–Au alloys. J Mater Chem 19(33):6042

    Article  Google Scholar 

  63. Qi Z, Zhao C, Wang X, Lin J, Shao W, Zhang Z et al (2009) Formation and characterization of monolithic nanoporous copper by chemical dealloying of Al–Cu alloys. J Phys Chem C 113(16):6694–6698

    Article  Google Scholar 

  64. Zhao C, Qi Z, Wang X, Zhang Z (2009) Fabrication and characterization of monolithic nanoporous copper through chemical dealloying of Mg–Cu alloys. Corros Sci 51(9):2120–2125

    Article  Google Scholar 

  65. Xu J, Zhang C, Wang X, Ji H, Zhao C, Wang Y et al (2011) Fabrication of bi-modal nanoporous bimetallic Pt–Au alloy with excellent electrocatalytic performance towards formic acid oxidation. Green Chem 13(7):1914

    Article  Google Scholar 

  66. Wang X, Qi Z, Zhao C, Wang W, Zhang Z (2009) Influence of alloy composition and dealloying solution on the formation and microstructure of monolithic nanoporous silver through chemical dealloying of Al–Ag alloys. J Phys Chem C 113(30):13139–13150

    Article  Google Scholar 

  67. Wang X, Wang W, Qi Z, Zhao C, Ji H, Zhang Z (2010) Fabrication, microstructure and electrocatalytic property of novel nanoporous palladium composites. J Alloy Compd 508(2):463–470

    Article  Google Scholar 

  68. Liu Y, Bliznakov S, Dimitrov N (2010) Factors controlling the less noble metal retention in nanoporous structures processed by electrochemical dealloying. J Electrochem Soc 157(8):K168

    Article  Google Scholar 

  69. Wang D, Yu Y, Xin HL, Hovden R, Ercius P, Mundy JA et al (2012) Tuning oxygen reduction reaction activity via controllable dealloying: a model study of ordered Cu3Pt/C intermetallic nanocatalysts. Nano Lett 12(10):5230–5238

    Article  Google Scholar 

  70. Zhang Z, Wang Y, Qi Z, Zhang W, Qin J, Frenzel J (2009) Generalized fabrication of nanoporous metals (Au, Pd, Pt, Ag, and Cu) through chemical dealloying. J Phys Chem C 113(29):12629–12636

    Article  Google Scholar 

  71. Kim S, Chen YK, Putkunz CT, Dunand DC, McNulty I, McNulty I et al (2011) Use of justified constraints in coherent diffractive imaging. AIP Conf. Proc. 1365:441–444

    Google Scholar 

  72. Fujita T, Qian L-H, Inoke K, Erlebacher J, Chen M-W (2008) Three-dimensional morphology of nanoporous gold. Appl Phys Lett 92(25):251902

    Article  Google Scholar 

  73. Ding Y, Kim YJ, Erlebacher J (2004) Nanoporous gold leaf:“ancient technology”/advanced material. Adv Mater 16(21):1897–1900

    Article  Google Scholar 

  74. Fujita T, Guan P, McKenna K, Lang X, Hirata A, Zhang L et al (2012) Atomic origins of the high catalytic activity of nanoporous gold. Nat Mater 11(9):775–780

    Article  Google Scholar 

  75. Rösner H, Parida S, Kramer D, Volkert C, Weissmüller J (2007) Reconstructing a nanoporous metal in three dimensions: an electron tomography study of dealloyed gold leaf. Adv Eng Mater 9(7):535–541

    Article  Google Scholar 

  76. Hovden R, Ercius P, Jiang Y, Wang D, Yu Y, Abruna HD et al (2014) Breaking the crowther limit: combining depth-sectioning and tilt tomography for high-resolution, wide-field 3D reconstructions. Ultramicroscopy 140:26–31

    Article  Google Scholar 

  77. Corcoran SG (ed) (1999) The morphology of alloy corrosion. In: Proceedings of the symposium on critical factors in localized corrosion III; Citeseer

    Google Scholar 

  78. Erlebacher J, McCue I (2012) Geometric characterization of nanoporous metals. Acta Mater 60(17):6164–6174

    Article  Google Scholar 

  79. Zhang Z, Wang Y, Wang Y, Wang X, Qi Z, Ji H et al (2010) Formation of ultrafine nanoporous gold related to surface diffusion of gold adatoms during dealloying of Al2Au in an alkaline solution. Scripta Mater 62(3):137–140

    Article  Google Scholar 

  80. Ji C, Searson PC (2003) Synthesis and characterization of nanoporous gold nanowires. J Phys Chem B 107(19):4494–4499

    Article  Google Scholar 

  81. Trasatti S, Petrii O (1991) Real surface area measurements in electrochemistry. Pure Appl Chem 63(5):711–734

    Article  Google Scholar 

  82. Liu Y, Bliznakov S, Dimitrov N (2009) Comprehensive study of the application of a pb underpotential deposition-assisted method for surface area measurement of metallic nanoporous materials. J Phys Chem C 113(28):12362–12372

    Article  Google Scholar 

  83. Rouya E, Cattarin S, Reed M, Kelly R, Zangari G (2012) Electrochemical characterization of the surface area of nanoporous gold films. J Electrochem Soc 159(4):K97–K102

    Article  Google Scholar 

  84. Wang X, Wang W, Qi Z, Zhao C, Ji H, Zhang Z (2012) Novel Raney-like nanoporous Pd catalyst with superior electrocatalytic activity towards ethanol electro-oxidation. Int J Hydrogen Energy 37(3):2579–2587

    Article  Google Scholar 

  85. Yeh F-H, Tai CC, Huang J-F, Sun I-W (2006) Formation of porous silver by electrochemical alloying/dealloying in a water-insensitive zinc chloride-1-ethyl-3-methyl imidazolium chloride ionic liquid. J Phys Chem B 110:5215–5222

    Google Scholar 

  86. Lei W, Briot NJ, Swartzentruber PD, Balk TJ (2014) Magnesium alloy precursor thin films for efficient, practical fabrication of nanoporous metals. Metall Mater Trans A 45(1):1–5

    Google Scholar 

  87. Hayes J, Hodge A, Biener J, Hamza A, Sieradzki K (2006) Monolithic nanoporous copper by dealloying Mn–Cu. J Mater Res 21(10):2611–2616

    Article  Google Scholar 

  88. Chen LY, Chen N, Hou Y, Wang ZC, Lv SH, Fujita T et al (2013) Geometrically controlled nanoporous PdAu bimetallic catalysts with tunable Pd/Au ratio for direct ethanol fuel cells. ACS Catal 3(6):1220–1230

    Article  Google Scholar 

  89. Liu L, Pippel E, Scholz R, Gösele U (2009) Nanoporous Pt–Co alloy nanowires: fabrication, characterization, and electrocatalytic properties. Nano Lett 9(12):4352–4358

    Article  Google Scholar 

  90. Qi Z, Weissmüller Jr (2013) Hierarchical nested-network nanostructure by dealloying. ACS Nano 7(7):5948–5954

    Article  Google Scholar 

  91. Qiu HJ, Shen X, Wang JQ, Hirata A, Fujita T, Wang Y et al (2015) Aligned nanoporous Pt–Cu bimetallic microwires with high catalytic activity toward methanol electrooxidation. ACS Catal 5(6):3779–3785

    Article  Google Scholar 

  92. Yu J, Ding Y, Xu C, Inoue A, Sakurai T, Chen M (2008) Nanoporous metals by dealloying multicomponent metallic glasses. Chem Mater 20(14):4548–4550

    Article  Google Scholar 

  93. Dan Z, Qin F, Sugawara Y, Muto I, Hara N (2012) Fabrication of ultrafine nanoporous copper by the minor addition of gold. Mater Trans 53(10):1765–1769

    Article  Google Scholar 

  94. Li R, Liu XJ, Wang H, Wu Y, Chu XM, Lu ZP (2014) Nanoporous silver with tunable pore characteristics and superior surface enhanced Raman scattering. Corros Sci 84:159–164

    Article  Google Scholar 

  95. Qi Z, Gong Y, Zhang C, Xu J, Wang X, Zhao C et al (2011) Fabrication and characterization of magnetic nanoporous Cu/(Fe, Cu)3O4 composites with excellent electrical conductivity by one-step dealloying. J Mater Chem 21(26):9716

    Article  Google Scholar 

  96. Ji H, Zhang C, Xu J, Zhao C, Wang X, Zhang Z (2011) On the vacancy-controlled dealloying of rapidly solidified Mg–Ag alloys. CrystEngComm 13(15):4846

    Article  Google Scholar 

  97. Snyder J, Asanithi P, Dalton AB, Erlebacher J (2008) Stabilized nanoporous metals by dealloying ternary alloy precursors. Adv Mater 20(24):4883–4886

    Article  Google Scholar 

  98. Wang X, Frenzel J, Wang W, Ji H, Qi Z, Zhang Z et al (2011) Length-scale modulated and electrocatalytic activity enhanced nanoporous gold by doping. J Phys Chem C 115(11):4456–4465

    Article  Google Scholar 

  99. Zhang Z, Zhang C, Gao Y, Frenzel J, Sun J, Eggeler G (2012) Dealloying strategy to fabricate ultrafine nanoporous gold-based alloys with high structural stability and tunable magnetic properties. CrystEngComm 14(23):8292

    Article  Google Scholar 

  100. Chen X, Jiang Y, Sun J, Jin C, Zhang Z (2014) Highly active nanoporous Pt-based alloy as anode and cathode catalyst for direct methanol fuel cells. J Power Sour 267:212–218

    Article  Google Scholar 

  101. Stepanovich A, Sliozberg K, Schuhmann W, Ludwig A (2012) Combinatorial development of nanoporous WO3 thin film photoelectrodes for solar water splitting by dealloying of binary alloys. Int J Hydrogen Energy 37(16):11618–11624

    Article  Google Scholar 

  102. Jia F, Yu C, Zhang L (2009) Hierarchical nanoporous gold film electrode with extra high surface area and electrochemical activity. Electrochem Commun 11(10):1944–1946

    Article  Google Scholar 

  103. Cherevko S, Kulyk N, Chung CH (2012) Pulse-reverse electrodeposition for mesoporous metal films: combination of hydrogen evolution assisted deposition and electrochemical dealloying. Nanoscale 4(2):568–575

    Article  Google Scholar 

  104. Zhang X, Li Y, Liu Y, Zhang H (2013) Fabrication of a bimodal micro/nanoporous metal by the Gasar and dealloying processes. Mater Lett 92:448–451

    Article  Google Scholar 

  105. Hyungyung J, Yong-Hun C, Myounggeun C, Jinhan C, Ji Hyun U, Yung-Eun S et al (2014) Novel method of powder-based processing of copper nanofoams for their potential use in energy applications. Mater Chem Phys 145(1–2):6–11

    Google Scholar 

  106. Nguyen NT, Altomare M, Yoo J, Schmuki P (2015) Efficient photocatalytic H-2 evolution: controlled dewetting-dealloying to fabricate site-selective high-activity nanoporous Au particles on highly ordered TiO2 nanotube arrays. Adv Mater 27(20):3208–3215

    Google Scholar 

  107. Gu X, Xu L, Tian F, Ding Y (2009) Au–Ag alloy nanoporous nanotubes. Nano Res 2(5):386–393

    Article  Google Scholar 

  108. Strasser P, Koh S, Anniyev T, Greeley J, More K, Yu C et al (2010) Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat Chem 2(6):454–460

    Article  Google Scholar 

  109. Snyder J, McCue I, Livi K, Erlebacher J (2012) Structure/processing/properties relationships in nanoporous nanoparticles as applied to catalysis of the cathodic oxygen reduction reaction. J Am Chem Soc 134(20):8633–8645

    Article  Google Scholar 

  110. Xu C, Su J, Xu X, Liu P, Zhao H, Tian F et al (2007) Low temperature CO oxidation over unsupported nanoporous gold. J Am Chem Soc 129(1):42–43

    Article  Google Scholar 

  111. Zhang Z, Wang Y, Wang X (2011) Nanoporous bimetallic Pt–Au alloy nanocomposites with superior catalytic activity towards electro-oxidation of methanol and formic acid. Nanoscale 3(4):1663–1674

    Article  Google Scholar 

  112. Ruffato G, Garoli D, Cattarin S, Barison S, Natali M, Canton P et al (2012) Patterned nanoporous-gold thin layers: Structure control and tailoring of plasmonic properties. Microporous Mesoporous Mater 163:153–159

    Article  Google Scholar 

  113. Snyder J, Livi K, Erlebacher J (2008) Dealloying silver/gold alloys in neutral silver nitrate solution: porosity evolution, surface composition, and surface oxides. J Electrochem Soc 155(8):C464

    Article  Google Scholar 

  114. Dursun A, Pugh DV, Corcoran SG (2003) Dealloying of Ag–Au alloys in halide-containing electrolytes. J Electrochem Soc 150(7):B355

    Article  Google Scholar 

  115. Qian LH, Chen MW (2007) Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation. Appl Phys Lett 91(8):083105

    Article  Google Scholar 

  116. Wang Y, Wang Y, Zhang C, Kou T, Zhang Z (2012) Tuning the ligament/channel size of nanoporous copper by temperature control. CrystEngComm 14(24):8352

    Article  Google Scholar 

  117. Vega AA, Newman RC (2014) Nanoporous metals fabricated through electrochemical dealloying of Ag–Au–Pt with systematic variation of Au: Pt ratio. J Electrochem Soc 161(1):C1–C10

    Article  Google Scholar 

  118. Yi Z, Markmann J, Hai-Jun J, Ivanisenko Y, Kurmanaeva L, Weissmuller J (2014) Crack mitigation during dealloying of Au 25Cu 75. Adv Eng Mater 16(4):389–398

    Article  Google Scholar 

  119. Chen AY, Shi SS, Qiu YD, Xie XF, Ruan HH, Gu JF et al (2015) Pore-size tuning and optical performances of nanoporous gold films. Microporous Mesoporous Mater 202:50–56

    Article  Google Scholar 

  120. Wang D, Yu Y, Zhu J, Liu S, Muller DA, Abruna HD (2015) Morphology and activity tuning of Cu3Pt/C ordered intermetallic nanoparticles by selective electrochemical dealloying. Nano Lett 15(2):1343–1348

    Article  Google Scholar 

  121. Okman O, Kysar JW (2011) Fabrication of crack-free blanket nanoporous gold thin films by galvanostatic dealloying. J Alloy Compd 509(22):6374–6381

    Article  Google Scholar 

  122. Qi Z, Vainio U, Kornowski A, Ritter M, Weller H, Jin H et al (2015) Porous gold with a nested-network architecture and ultrafine structure. Adv Funct Mater 25(17):2530–2536

    Article  Google Scholar 

  123. Gan L, Heggen M, O’Malley R, Theobald B, Strasser P (2013) Understanding and controlling nanoporosity formation for improving the stability of bimetallic fuel cell catalysts. Nano Lett 13(3):1131–1138

    Article  Google Scholar 

  124. Wada T, Yubuta K, Inoue A, Kato H (2011) Dealloying by metallic melt. Mater Lett 65(7):1076–1078

    Article  Google Scholar 

  125. Wada T, Kato H (2013) Three-dimensional open-cell macroporous iron, chromium and ferritic stainless steel. Scripta Mater 68(9):723–726

    Article  Google Scholar 

  126. Morrish R, Muscat AJ (2013) Dealloying multiphase AgCu thin films in supercritical CO2. J Phys Chem C 117(23):12071–12077

    Article  Google Scholar 

  127. Li R, Sieradzki K (1992) Ductile-brittle transition in random porous Au. Phys Rev Lett 68(8):1168

    Article  Google Scholar 

  128. Cheng IC, Hodge AM (2014) High temperature morphology and stability of nanoporous Ag foams. J Porous Mater 21(4):467–474

    Article  Google Scholar 

  129. Kertis F, Snyder J, Govada L, Khurshid S, Chayen N, Erlebacher J (2010) Structure/processing relationships in the fabrication of nanoporous gold. JOM 62(6):50–56

    Article  Google Scholar 

  130. Y-cK Chen-Wiegart, Wang S, Chu YS, Liu W, McNulty I, Voorhees PW et al (2012) Structural evolution of nanoporous gold during thermal coarsening. Acta Mater 60(12):4972–4981

    Article  Google Scholar 

  131. Shui J-L, Zhang J-W, Li JCM (2011) Making Pt-shell Pt30Ni70 nanowires by mild dealloying and heat treatments with little Ni loss. J Mater Chem 21(17):6225

    Article  MathSciNet  Google Scholar 

  132. Vega AA, Newman RC (2014) Beneficial effects of adsorbate-induced surface segregation of Pt in nanoporous metals fabricated by dealloying of Ag–Au–Pt alloys. J Electrochem Soc 161(1):C11–C19

    Article  Google Scholar 

  133. Qiu H, Xu C, Huang X, Ding Y, Qu Y, Gao P (2008) Adsorption of laccase on the surface of nanoporous gold and the direct electron transfer between them. J Phys Chem C 112(38):14781–14785

    Article  Google Scholar 

  134. Feng R, Zhang Y, Yu H, Wu D, Ma H, Zhu B et al (2013) Nanoporous PtCo-based ultrasensitive enzyme-free immunosensor for zeranol detection. Biosens Bioelectron 42:367–372

    Article  Google Scholar 

  135. Ding J, Zhang H, Jia F, Qin W, Du D (2014) Assembly of carbon nanotubes on a nanoporous gold electrode for acetylcholinesterase biosensor design. Sens Actuators B-Chem 199:284–290

    Article  Google Scholar 

  136. Hafez AM, Huber A, Wenclawiak BW (2013) Time-of-flight-secondary ion mass spectrometry and cyclic voltammetry studies of self-assembly of dodecanethiol on a nanoporous gold surface. Anal Chem 85(6):3334–3339

    Article  Google Scholar 

  137. Liu Y, Guo W, Qin X, Meng X, Zhu X, Wang J et al (2014) Sensitive sandwich electrochemical immunosensor for human chorionic gonadotropin using nanoporous Pd as a label. RSC Adv 4(42):21891–21898

    Article  Google Scholar 

  138. Shang L, Zhao F, Zeng B (2014) 3D porous graphene-porous PdCu alloy nanoparticles-molecularly imprinted poly(para-aminobenzoic acid) composite for the electrocatalytic assay of melamine. ACS Appl Mater Interfaces 6(21):18721–18727

    Article  Google Scholar 

  139. Yin T, Pan D, Qin W (2014) All-solid-state polymeric membrane ion-selective miniaturized electrodes based on a nanoporous gold film as solid contact. Anal Chem 86(22):11038–11044

    Article  Google Scholar 

  140. Detsi E, Onck P, De Hosson JTM (2013) Metallic muscles at work: high rate actuation in nanoporous gold/polyaniline composites. ACS Nano 7(5):4299–4306

    Article  Google Scholar 

  141. Li Y, Ding Y (2010) Porous AgCl/Ag nanocomposites with enhanced visible light photocatalytic properties. J Phys Chem C 114(7):3175–3179

    Article  Google Scholar 

  142. Fan Y, Baozhu T, Jinlong Z, Tianqing X, Tingting W (2014) Preparation, characterization, and photocatalytic activity of porous AgBr@Ag and AgBr I@Ag plasmonic photocatalysts. Appl Surf Sci 292:256–261

    Article  Google Scholar 

  143. Kucheyev S, Hayes J, Biener J, Huser T, Talley C, Hamza A (2006) Surface-enhanced Raman scattering on nanoporous Au. Appl Phys Lett 89(5):053102

    Article  Google Scholar 

  144. Qian L, Das B, Li Y, Yang Z (2010) Giant Raman enhancement on nanoporous gold film by conjugating with nanoparticles for single-molecule detection. J Mater Chem 20(33):6891–6895

    Article  Google Scholar 

  145. Zeng J, Zhao F, Li M, Li C-H, Lee TR, Shih W-C (2015) Morphological control and plasmonic tuning of nanoporous gold disks by surface modifications. J Mater Chem C 3(2):247–252

    Article  Google Scholar 

  146. Qian L, Shen W, Shen B, Qin GW, Das B (2010) Nanoporous gold–alumina core–shell films with tunable optical properties. Nanotechnology 21(30):305705

    Article  Google Scholar 

  147. Bak C, Kim K, Jung K, Kim J, Jang J (2014) Efficient photoelectrochemical water splitting of nanostructured hematite on a three-dimensional nanoporous metal electrode. J Mater Chem A 2(41):17249–17252

    Google Scholar 

  148. Wang R, Wang C, Cai WB, Ding Y (2010) Ultralow-platinum-loading high-performance nanoporous electrocatalysts with nanoengineered surface structures. Adv Mater 22(16):1845–1848

    Article  Google Scholar 

  149. Wang R, Liu J, Liu P, Bi X, Yan X, Wang W et al (2014) Ultra-thin layer structured anodes for highly durable low-Pt direct formic acid fuel cells. Nano Res 7(11):1569–1580

    Article  Google Scholar 

  150. Snyder J, Livi K, Erlebacher J (2013) Oxygen reduction reaction performance of [MTBD][beti]-encapsulated nanoporous NiPt alloy nanoparticles. Adv Funct Mater 23(44):5494–5501

    Article  Google Scholar 

  151. Ke X, Xu Y, Yu C, Zhao J, Cui G, Higgins D et al (2014) Pd-decorated three-dimensional nanoporous Au/Ni foam composite electrodes for H2O2 reduction. J Mater Chem A 2(39):16474–16479

    Article  Google Scholar 

  152. Meng F, Ding Y (2011) Sub-micrometer-thick all-solid-state supercapacitors with high power and energy densities. Adv Mater 23(35):4098–4102

    Article  Google Scholar 

  153. Lang X, Hirata A, Fujita T, Chen M (2011) Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat Nanotechnol 6(4):232–236

    Article  Google Scholar 

  154. Yu Y, Gu L, Lang X, Zhu C, Fujita T, Chen M et al (2011) Li storage in 3D nanoporous Au-supported nanocrystalline tin. Adv Mater 23(21):2443–2447

    Article  Google Scholar 

  155. Zhang S, Xing Y, Jiang T, Du Z, Li F, He L et al (2011) A three-dimensional tin-coated nanoporous copper for lithium-ion battery anodes. J Power Sour 196(16):6915–6919

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Ding .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ding, Y., Zhang, Z. (2016). Formation and Microstructural Regulation of Nanoporous Metals. In: Nanoporous Metals for Advanced Energy Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-29749-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29749-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29747-7

  • Online ISBN: 978-3-319-29749-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics