Advertisement

Carbon Nanotubes as Microbumps for 3D Integration

  • Dominique BaillargeatEmail author
  • E. B. K. Tay
Chapter

Abstract

In the future, electronics will face many challenges beyond the prediction of Moore’s law. In this context, nanopackaging will play a crucial role for enabling future electronics to be consistent with future component, system, and circuit board (or global-level) requirements. Moreover, assembly approaches are moving toward heterogeneous three-dimensional integrated circuits (3D ICs) with silicon via wafer thinning, bonding technologies, and 3D system integration and miniaturization. Many of these packaging and assembly requirements are triggering an unprecedented pace of innovation in terms of new technologies, new system integration techniques, and new materials. Intensive research investigations are focused on carbon nanotubes (CNTs), graphene, 2D materials, nanowires, nanoparticles, and so on. In addition, many challenges remain to be faced with regard to the development of state-of-the-art interconnect interfaces, the development of predictive modeling tools based on multidisciplinary and advanced multiscales approaches, and the fabrication and tests of representative demonstrators with a significant impact.

The work described in this chapter is in this context. We propose innovative CNTs based on high-frequency interconnections as microbumps. A demonstration of a successfully CNT-based flip chip bonded structure is performed at high frequencies up to 40 GHz. Very encouraging measurements and the dedicated hybrid (EM/analytical) model are in good agreement. We propose that CNT-based microbumps should be a new alternative interconnect for future submillimeter electronics.

Keywords

Barrier Layer Insertion Loss Test Structure Flip Chip Flip Chip Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors want to acknowledge all the contributors to this work and in particular Dr. Christophe Brun and Dr. Yap Chin Chong as main contributors during their Ph.D. thesis, Dr. Tan Chong Wei, Dr. Lu Congxiang, Dr. Chow Wai Leong, and Dunlin Tan for their help and valuable advice.

References

  1. 1.
    Naeemi A, Meindl JD (2008) Performance modeling for single- and multiwall carbon nanotubes as signal and power interconnects in gigascale systems. IEEE Trans Electron Devices 55:2574–2582CrossRefGoogle Scholar
  2. 2.
    Banerjee K, Hong L, Srivastava N (2008) Current status and future perspectives of carbon nanotube interconnects. In: Proceedings of the 8th international conference on nanotechnology, NANO ‘08, IEEE, Arlington, TX, 18–21 August 2008, pp 432–436Google Scholar
  3. 3.
  4. 4.
    Hong L, Chuan X, Srivastava N, Banerjee K (2009) Carbon nanomaterials for next-generation interconnects and passives: physics, status, and prospects. IEEE Trans Electron Devices 56:1799–1821CrossRefGoogle Scholar
  5. 5.
    Awano Y, Sato S, Nihei M, Sakai T, Ohno Y, Mizutani T (2010) Carbon nanotubes for VLSI: interconnect and transistor applications. Proc IEEE 98:2015–2031CrossRefGoogle Scholar
  6. 6.
    Zhengchun L, Lijie C, Kar S, Ajayan PM, Jian-Qiang L (2009) Fabrication and electrical characterization of densified carbon nanotube micropillars for IC interconnection. IEEE Trans Nanotechnol 8:196–203CrossRefGoogle Scholar
  7. 7.
    Nihei M, Kawabata A, Sato M, Nozue T, Hyakushima T, Kondo D, Ohfuti M, Sato S, Yuji A (2010) Carbon nanotube interconnect technologies for future LSIs. In: Swart JW (ed) Solid state circuits technologies. InTech, RijekaGoogle Scholar
  8. 8.
    Jiang D, Wang T, Chen S, Ye L, Liu J (2013) Paper-mediated controlled densification and low temperature transfer of carbon nanotube forests for electronic interconnect application. Microelectron Eng 103:177–180CrossRefGoogle Scholar
  9. 9.
    Ting J-H, Chiu C-C, Huang F-Y (2009) Carbon nanotube array vias for interconnect applications. J Vac Sci Technol B Microelectron Nanometer Struct 27:1086–1092CrossRefGoogle Scholar
  10. 10.
    Wen W, Krishnan S, Ke L, Xuhui S, Wu R, Yamada T et al (2009) Extracting resistances of carbon nanostructures in vias. In: IEEE international conference on microelectronic test structures, ICMTS 2009, IEEE, Oxnard, CA, 30 March 2009–2 April 2009, pp 27–30Google Scholar
  11. 11.
    Xuhui S, Ke L, Wu R, Wilhite P, Yang CY (2010) Contact resistances of carbon nanotubes grown under various conditions. In: Proceedings of the 2010 IEEE nanotechnology materials and devices conference, IEEE, Monterey, CA, 12–15 October 2010, pp 332–333Google Scholar
  12. 12.
    Sangsub S, Youngmin K, Jimin M, Heeseok L, Youngwoo K, Kwang-Seok S (2009) Amillimeter-wave system-on-package technology using a thin-film substrate with a flip-chip interconnection. IEEE Trans Adv Packag 32:101–108Google Scholar
  13. 13.
    Hsu LH, Oh CW, Wu WC, Chang EY, Zirath H, Wang CT et al (2012) Design, fabrication, and reliability of low-cost flip-chip-on-board package for commercial applications up to 50 GHz. IEEE Trans Compon Packag Manuf Technol 2:402–409CrossRefGoogle Scholar
  14. 14.
    Heinrich W (2005) The flip-chip approach for millimeter wave packaging. IEEE Microw Mag 6:36–45CrossRefGoogle Scholar
  15. 15.
    Jae-Woong N, Kai C, Suh JO, Tu KN (2007) Electromigration study in flip chip solder joints. In: Proceedings of the 57th electronic components and technology conference, ECTC ‘07, IEEE, Reno, NV, 29 May 2007–1 June 2007, pp 1450–1455Google Scholar
  16. 16.
    Chhowalla M, Teo KBK, Ducati C, Rupesinghe NL, Amaratunga GAJ, Ferrari AC et al (2001) Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J Appl Phys 90:5308–5317CrossRefGoogle Scholar
  17. 17.
    Tummala R, Wong CP, Markondeya Raj P (2009) Nanopackaging research at Georgia Tech. IEEE Nanotechnol Mag 3:20–25CrossRefGoogle Scholar
  18. 18.
    Hermann S, Pahl B, Ecke R, Schulz SE, Gessner T (2010) Carbon nanotubes for nanoscale low temperature flip chip connections. Microelectron Eng 87:438–442CrossRefGoogle Scholar
  19. 19.
    Jentzsch A, Heinrich W (2001) Theory and measurements of flip-chip interconnects for frequencies up to 100 GHz. IEEE Trans Microw Theory Tech 49:871–878CrossRefGoogle Scholar
  20. 20.
    Iwai T, Shioya H, Kondo D, Hirose S, Kawabata A, Sato S et al (2005) Thermal and source bumps utilizing carbon nanotubes for flip-chip high power amplifiers. In: IEEE international electron devices meeting, 2005 IEDM technical digest, IEEE, Washington, DC, 5–5 December 2005, pp 257–260Google Scholar
  21. 21.
    Soga I, Kondo D, Yamaguchi Y, Iwai T, Mizukoshi M, Awano Y et al (2008) Carbon nanotube bumps for LSI interconnect. In: Proceedings of the 58th electronic components and technology conference, ECTC 2008, IEEE, Lake Buena Vista, FL, 27–30 May 2008, pp 1390–1394Google Scholar
  22. 22.
    Fan S, Chapline MG, Franklin NR, Tombler TW, Cassell AM, Dai H (1999) Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283:512–514CrossRefGoogle Scholar
  23. 23.
    Jun H, WonBong C (2008) Controlled growth and electrical characterization of bent single-walled carbon nanotubes. Nanotechnology 19:505601CrossRefGoogle Scholar
  24. 24.
    Kumar A, Pushparaj VL, Kar S, Nalamasu O, Ajayan PM, Baskaran R (2006) Contact transfer of aligned carbon nanotube arrays onto conducting substrates. Appl Phys Lett 89: 163120–163123CrossRefGoogle Scholar
  25. 25.
    Yung KP, Wei J, Tay BK (2009) Formation and assembly of carbon nanotube bumps for interconnection applications. Diam Relat Mater 18:1109–1113CrossRefGoogle Scholar
  26. 26.
    Wang B, Liu X, Liu H, Wu D, Wang H, Jiang J et al (2003) Controllable preparation of patterns of aligned carbon nanotubes on metals and metal-coated silicon substrates. J Mater Chem 13:1124–1126CrossRefGoogle Scholar
  27. 27.
    Tay BK, Wang ZF, Yung KP, Wei J (2008) Effects of under CNT metallization layers on carbon nanotubes growth. Mod Phys Lett 22:1827–1836CrossRefGoogle Scholar
  28. 28.
    García-Céspedes J, Thomasson S, Teo KBK, Kinloch IA, Milne WI, Pascual E et al (2009) Efficient diffusion barrier layers for the catalytic growth of carbon nanotubes on copper substrates. Carbon 47:613–621CrossRefGoogle Scholar
  29. 29.
    Bertrand N, Drevillon B, Gheorghiu A, Senemaud C, Martinu L, Klemberg-Sapieha JE (1998) Adhesion improvement of plasma-deposited silica thin films on stainless steel substrate studied by X-ray photoemission spectroscopy and in situ infrared ellipsometry. J Vac Sci Technol A 16:6–12CrossRefGoogle Scholar
  30. 30.
    De Los Santos VL, Lee D, Seo J, Leon FL, Bustamante DA, Suzuki S et al (2009) Crystallization and surface morphology of Au/SiO2 thin films following furnace and flame annealing. Surf Sci 603:2978–2985CrossRefGoogle Scholar
  31. 31.
    Wißmann P, Finzel H-U (2007) The effect of annealing on the electrical resistivity of thin gold films. In: Electrical resistivity of thin metal films, vol 223. Springer, Heidelberg, pp 35–52CrossRefGoogle Scholar
  32. 32.
    Basa D (2010) Plasma treatment studies of MIS devices. Cent Eur J Phys 8:400–407Google Scholar
  33. 33.
    von Arnim VL, Fessmann J, Psotta L (1999) Plasma treatment of thin gold surfaces for wire bond applications. Surf Coat Technol 116–119:517–523CrossRefGoogle Scholar
  34. 34.
    Burke PJ (2002) Luttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes. IEEE Trans Nanotechnol 1:129–144CrossRefGoogle Scholar
  35. 35.
    Minghui S, Zhiyong X, Yang C, Yuan L, Chan PCH (2011) Inductance properties of in situ-grown horizontally aligned carbon nanotubes. IEEE Trans Electron Devices 58:229–235CrossRefGoogle Scholar
  36. 36.
    Yang C, Zhiyong X, Philip CHC (2010) Horizontally aligned carbon nanotube bundles for interconnect application: diameter-dependent contact resistance and mean free path. Nanotechnology 21:235705CrossRefGoogle Scholar
  37. 37.
    Kociak M, Suenaga K et al (2002) Linking chiral indices and transport properties of double-walled carbon nanotubes, vol 89. American Physical Society, Ridge, NYGoogle Scholar
  38. 38.
    White CT, Mintmire JW (2004) Fundamental properties of single-wall carbon nanotubes. JPhys Chem B 109:52–65Google Scholar
  39. 39.
    Yap CC, Tan D, Brun C, Teo EHT, Wei J, Baillargeat D et al (2011) Characterization of novel CNT to CNT joining interconnections implemented for 1st level flip chip packaging. Presented at the electronics packaging technology conference, SingaporeGoogle Scholar
  40. 40.
    Susi T, Kaskela A, Zhu Z, Ayala P, Arenal R, Tian Y et al (2011) Nitrogen-doped single-walled carbon nanotube thin films exhibiting anomalous sheet resistances. Chem Mater 23:2201–2208CrossRefGoogle Scholar
  41. 41.
    Kim J-B, Kong S-J, Lee S-Y, Kim J-H, Lee H-R, Kim C-D et al (2012) Characteristics of nitrogen-doped carbon nanotubes synthesized by using PECVD and thermal CVD. J Korean Phys Soc 60:1124–1128CrossRefGoogle Scholar
  42. 42.
    Yaglioglu O, Hart AJ, Martens R, Slocum AH (2006) Method of characterizing electrical contact properties of carbon nanotube coated surfaces. Rev Sci Instrum 77:095105–095103CrossRefGoogle Scholar
  43. 43.
    Yoon Y-G, Mazzoni MSC, Choi HJ, Ihm J, Louie SG (2001) Structural deformation and intertube conductance of crossed carbon nanotube junctions. Phys Rev Lett 86:688–691CrossRefGoogle Scholar
  44. 44.
    Fuhrer MS, Nygård J, Shih L, Forero M, Yoon Y-G, Mazzoni MSC et al (2000) Crossed nanotube junctions. Science 288:494–497CrossRefGoogle Scholar
  45. 45.
    Nah J-W, Chen K (2007) Electromigration study in flip chip solder joints, Conference: Electronic Components and Technology Conference, 2007. ECTC '07. 1450–1455Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.XLIM UMR CNRS 7252Université de Limoges/CNRSLimogesFrance
  2. 2.CINTRA CNRS/NTU/THALES, UMI 3288SingaporeSingapore
  3. 3.NOVITAS, School of EEENanyang Technological UniversitySingaporeSingapore

Personalised recommendations