Carbon Nanotubes as Vertical Interconnects for 3D Integrated Circuits

  • Sten Vollebregt
  • Ryoichi IshiharaEmail author


Currently interconnect technology is the largest contributor to delays in integrated circuits (ICs). By stacking multiple layers of transistors, a process called 3D integration, the length of the interconnects can be reduced considerably. For this, high-aspect ratio, reliable, and low resistance vertical interconnects (vias) are required. Due to their excellent electrical, thermal, and mechanical properties, carbon nanotubes (CNT) are an attractive candidate for this. In this chapter we discuss the application of CNT as vias in 3D IC technology. We start by summarizing the requirements necessary for the successful integration of CNT in semiconductor technology. After this, results from the literature on the application of CNT as vias in traditional IC technology will be reviewed, as most research has so far been focussed on this application. This will be followed by the specific applications of CNT for through-silicon vias and for monolithic 3D IC. Finally the prospects of the application will be discussed.


Contact Resistance Chemical Mechanical Polishing Support Layer VLSI Technology Monolithic Integration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bohr MT (1995) Interconnect scaling - the real limiter to high performance ULSI. In: IEEE international electron devices meeting, pp 241–244Google Scholar
  2. 2.
    Sun S (1997) Process technologies for advanced metallization and interconnect systems. In: IEEE international electron devices meeting, pp 765–768Google Scholar
  3. 3.
    Rossnagel SM, Wisnieff R, Edelstein D, Kuan TS (2005) Interconnect issues post 45nm. In: IEEE international electron devices meeting, pp 89–91Google Scholar
  4. 4.
    ITRS (2013) International technology roadmap for semiconductors.
  5. 5.
    Koyanagi M, Kurino H, Lee KW, Sakuma K, Miyakawa N, Itani H (1998) Future system-on-silicon LSI chips. IEEE Micro 18(4):17CrossRefGoogle Scholar
  6. 6.
    Chan VWC, Chan PCH, Chan V (2000) Three dimensional CMOS integrated circuits on large grain polysilicon films. In: IEEE international electron devices meeting, pp 161–164Google Scholar
  7. 7.
    Topol AW, La Tulipe JDC, Shi L, Frank DJ, Bernstein K, Steen SE, Kumar A, Singco GU, Young AM, Guarini KW, Ieong M (2006) Three-dimensional integrated circuits. IBM J Res Dev 50(4/5):491CrossRefGoogle Scholar
  8. 8.
    Kreupl F, Graham AP, Lieba M, Duesber GS, Seide R, Unger E (2004) Carbon nanotubes for interconnect applications. In: IEEE international electron devices meeting, pp 683–686Google Scholar
  9. 9.
    Robertson J (2007) Growth of nanotubes for electronics. Mater Today 10(1–2):36CrossRefGoogle Scholar
  10. 10.
    Wei BQ, Vajtai R, Ajayan PM (2001) Reliability and current carrying capacity of carbon nanotubes. Appl Phys Lett 79(8):1172CrossRefGoogle Scholar
  11. 11.
    Naeemi A, Meindl JD (2008) Performance modeling for single- and multiwall carbon nanotubes as signal and power interconnects in gigascale systems. IEEE Trans Electron Devices 55(10):2574CrossRefGoogle Scholar
  12. 12.
    Li H, Srivastava N, Mao JF, Yin WY, Banerjee K (2011) Carbon nanotube vias: does ballistic electron-phonon transport imply improved performance and reliability. IEEE Trans Nanotechnol 58(8):2689CrossRefGoogle Scholar
  13. 13.
    Pop E, Mann D, Wang Q, Goodson K, Dai H (2006) Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett 6(1):96CrossRefGoogle Scholar
  14. 14.
    Hutchison DN, Morrill NB, Aten Q, Turner BW, Jensen BD, Howell LL, Vanfleet RR, Davis RC (2010) Carbon nanotubes as a framework for high-aspect-ratio MEMS cabrication. J Microelectromech Syst 19(1):75CrossRefGoogle Scholar
  15. 15.
    Dai H (2001) Nanotube growth and characterization. In: Carbon nanotubes. Topics in applied physics, vol 80. Springer, Berlin, pp 29–53Google Scholar
  16. 16.
    Istratov A, Hieslmair H, Weber ER (2000) Iron contamination in silicon technology. Appl Phys A 70:489CrossRefGoogle Scholar
  17. 17.
    Vollebregt S, Ishihara R, Tichelaar FD, Hou Y, Beenakker CIM (2012) Influence of the growth temperature on the first and second-order Raman band ratios and widths of carbon nanotubes and fibers. Carbon 50(10):3542CrossRefGoogle Scholar
  18. 18.
    Kikkawa T, Inoue K, Imai K (2004) Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties Cobalt silicide technology. In: Silicide technology for integrated circuits. The Institution of Engineering and Technology, London, pp 77–94CrossRefGoogle Scholar
  19. 19.
    Fan S, Chapline MG, Franklin NR, Tombler TW, Cassell AM, Dai H (1999) Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283(5401):512CrossRefGoogle Scholar
  20. 20.
    Bower C, Zhu W, Jin S, Zhou O (2000) Plasma-induced alignment of carbon nanotubes. Appl Phys Lett 77(6):830CrossRefGoogle Scholar
  21. 21.
    Li J, Ye Q, Cassell A, Ng HT, Stevens R, Han J, Meyyappan M (2003) Bottom-up approach for carbon nanotube interconnects. Appl Phys Lett 82(15):2491CrossRefGoogle Scholar
  22. 22.
    Kreupl F, Graham AP, Duesberg GS, Steinhögl W, Liebau M, Unger E, Hönlein W (2002) Carbon nanotubes in interconnect applications. Microelectron Eng 64(1–4):399CrossRefGoogle Scholar
  23. 23.
    Nihei M, Kawabata A, Awano Y (2003) Direct diameter-controlled growth of multiwall carbon nanotubes on nickel-silicide layer. Jpn J Appl Phys 42(6B):L721CrossRefGoogle Scholar
  24. 24.
    Katagiri M, Yamazaki Y, Wada M, Kitamura M, Sakuma N, Suzuki M, Sato S, Nihei M, Kajita A, Sakai T, Awano Y (2011) Improvement in electrical properties of carbon nanotube via interconnects. Jpn J Appl Phys 50:05EF01Google Scholar
  25. 25.
    Katagiri M, Wada M, an Yuichi Yamazaki BI, Suzuki M, Kitamura M, Saito T, Isobayashi A, Sakata A, Sakuma N, Kajita A, Sakai T (2012) Fabrication and characterization of planarized carbon nanotube via interconnects. Jpn J Appl Phys 51:05ED02Google Scholar
  26. 26.
    Choi YM, Lee S, Yoon HS, Lee MS, Kim H, Han I, Son Y, Yeo IS, Chung UI, Moon JT (2006) Integration and electrical properties of carbon nanotube array for interconnect applications. In: Sixth IEEE conference on nanotechnology, pp 262–265Google Scholar
  27. 27.
    Lee S, Moon S, Yoon HS, Wang X, Kim DW, Yeo IS, Chung UI, Moon JT, Chung J (2008) Selective growth of carbon nanotube for via interconnects by oxidation and selective reduction of catalyst. Appl Phys Lett 93(18):182106CrossRefGoogle Scholar
  28. 28.
    Nihei M, Horibe M, Kawabata A, Awano Y (2004) Carbon nanotube vias for future LSI interconnects. In: IEEE international interconnect technology conference, pp 251–253Google Scholar
  29. 29.
    Horibe M, Nihei M, Kondo D, Kawabata A, Awano Y (2004) Mechanical Polishing Technique for Carbon Nanotube Interconnects in ULSIs. Jpn J Appl Phys 43(9A):6499CrossRefGoogle Scholar
  30. 30.
    Nihei M, Kondo D, Kawabata A, Sato S, Shioya H, Sakaue M, Iwai T, Ohfuti M, Awano Y (2005) Low-resistance multi-walled carbon nanotube vias with parallel channel conduction of inner shells. In: IEEE international interconnect technology conference, pp 234–236Google Scholar
  31. 31.
    Yokoyama D, Iwasaki T, Yoshida T, Kawarada H, Sato S, Hyakushima T, Nihei M, Awano Y (2007) Low temperature grown carbon nanotube interconnects using inner shells by chemical mechanical polishing. Appl Phys Lett 91(26):263101CrossRefGoogle Scholar
  32. 32.
    Sato S, Nihei M, Mimura A, Kawabata A, Kondo D, Shioya H, Iwai T, Mishima M, Ohfuti M, Awano Y (2006) Novel approach to fabricating carbon nanotube via interconnects using size-controlled catalyst nanoparticles. In: IEEE international interconnect technology conference, pp 230–232Google Scholar
  33. 33.
    Nihei M, Hyakushima T, Sato S, Nozue T, Norimatsu M, Mishima M, Murakami T, Kondo D, Kawabata A, Ohfuti M, Awano Y (2007) Electrical properties of carbon nanotube via interconnects fabricated by novel damascene process. In: IEEE international interconnect technology conference, pp 204–206Google Scholar
  34. 34.
    Yokoyama D, Iwasaki T, Ishimaru K, Sato S, Hyakushima T, Nihei M, Awano Y, Kawarada H (2008) Electrical properties of carbon nanotubes grown at a low temperature for use as interconnects. Jpn J Appl Phys 47(4):1985CrossRefGoogle Scholar
  35. 35.
    Esconjauregui S, Fouquet M, Bayer BC, Ducati C, Smajda R, Hofmann S, Robertson J (2010) Growth of ultrahigh density vertically aligned carbon nanotube forests for interconnects. ACS Nano 4(12):7431CrossRefGoogle Scholar
  36. 36.
    Esconjauregui S, Fouquet M, Bayer BC, Eslava S, Khachadorian S, Hofmann S, Robertson J (2011) Manipulation of the catalyst-support interactions for inducing nanotube forest growth. J Appl Phys 109:044303CrossRefGoogle Scholar
  37. 37.
    Zhang C, Yan F, Allen CS, Bayer BC, Hofmann S, Hickey BJ, Cott D, Zhong G, Robertson J (2010) Growth of vertically-aligned carbon nanotube forests on conductive cobalt disilicide support. J Appl Phys 108(2):024311CrossRefGoogle Scholar
  38. 38.
    Esconjauregui S, Xie R, Guo Y, Pfaendler SML, Fouquet M, Gillen R, Cepek C, Castellarin-Cudia C, Eslava S, Robertson J (2013) Electrical conduction of carbon nanotube forests through sub-nanometric films of alumina. Appl Phys Lett 102(11):113109CrossRefGoogle Scholar
  39. 39.
    Sugime H, Esconjauregui S, Yang J, D’Arsié L, Oliver RA, Bhardwaj S, Cepek C, Robertson J (2013) Low temperature growth of ultra-high mass density carbon nanotube forests on conductive supports. Appl Phys Lett 103:073116CrossRefGoogle Scholar
  40. 40.
    Dijon J, Okuno H, Fayolle M, Vo T, Pontcharra J, Acquaviva D, Bouvet D, Ionescu AM, Esconjauregui CS, Capraro B, Quesnel E, Robertson J (2010) Ultra-high density Carbon Nanotubes on Al-Cu for advanced Vias. In: IEEE international electron devices meeting, pp 33.4.1–33.4.4Google Scholar
  41. 41.
    Chiodarelli N, Li Y, Cott DJ, Mertens S, Peys N, Heyns M, Gendt SD, Groeseneken G, Vereecken PM (2010) Integration and electrical characterization of carbon nanotube via interconnects. Microelectron Eng 88(5):837CrossRefGoogle Scholar
  42. 42.
    Chiodarelli N, Masahito S, Kashiwagi Y, Li Y, Arstila K, Richard O, Cott DJ, Heyns M, Gendt SD, Groeseneken G, Vereecken PM (2011) Measuring the electrical resistivity and contact resistance of vertical carbon nanotube bundles for application as interconnects. Nanotechnology 22(8):085302CrossRefGoogle Scholar
  43. 43.
    Chiodarelli N (2011) Integration of carbon nanotubes as future interconnections for sub-32nm technologies. Ph.D. thesis, Katholieke Universiteit LeuvenGoogle Scholar
  44. 44.
    Vereecke B, van der Veen MH, Barbarin Y, Sugiura M, Kashiwagi Y, Cott DJ, Huyghebaert C, Tökei Z (2012) Characterization of carbon nanotube based vertical interconnects. In: Extended abstracts of the 2012 international conference on solid state devices and materials, pp 648–649Google Scholar
  45. 45.
    van der Veen MH, Vereecke B, Huyghebaert C, Cott DJ, Sugiura M, Kashiwagi Y, Teugels L, Caluwaerts R, Chiodarelli N, Vereecken PM, Beyer GP, Heyns MM, Gendt SD, Tökei Z (2012) Electrical characterization of CNT contacts with Cu Damascene top contact. Microelectron Eng 106:106Google Scholar
  46. 46.
    van der Veen MH, Barbarin Y, Vereecke B, Sugiura M, Kashiwagi Y, Cott DJ, Huyghebaert C, Tökei Z (2013) Electrical Improvement of CNT Contacts with Cu Damascene Top Metallization. In: IEEE international interconnect technology conference, pp 193–195Google Scholar
  47. 47.
    Vollebregt S, Ishihara R, van der Cingel J, Beenakker K (2012) Low-temperature bottom-up integration of carbon nanotubes for vertical interconnects in monolithic 3D integrated circuits. In: Proceedings of the 3rd IEEE international 3D system integration conference, pp 1–4Google Scholar
  48. 48.
    Vollebregt S, Ishihara R, Derakhshandeh J, van der Cingel J, Schellevis H, Beenakker CIM (2011) Integrating low temperature aligned carbon nanotubes as vertical interconnects in Si technology. In: 11th IEEE conference on nanotechnology, pp 985–990Google Scholar
  49. 49.
    Vollebregt S, Chiaramonti AN, Ishihara R, Schellevis H, Beenakker CIM (2012) Contact resistance of low-temperature carbon nanotube vertical interconnects. In 12th IEEE conference on nanotechnology, pp 424–428Google Scholar
  50. 50.
    Vollebregt S, Tichelaar FD, Schellevis H, Beenakker CIM, Ishihara R (2014) Carbon nanotube vertical interconnects fabricated at temperatures as low as 350C. Carbon 71:249CrossRefGoogle Scholar
  51. 51.
    Naeemi A, Meindl JD (2007) Physical modeling of temperature coefficient of resistance for single- and multi-wall carbon nanotube interconnects. IEEE Electron Device Lett 28(2):135CrossRefGoogle Scholar
  52. 52.
    Vollebregt S, Banerjee S, Beenakker CIM, Ishihara R (2013) Size-dependent effects on the temperature coefficient of resistance of carbon nanotube vias. IEEE Trans Electron Devices 60(12):4085CrossRefGoogle Scholar
  53. 53.
    Xie R, Zhang C, van der Veen MH, Arstila K, Hantschel T, Chen B, Zhong G, Robertson J (2013) Carbon nanotube growth for through silicon via application. Nanotechnology 24(12):125603Google Scholar
  54. 54.
    Poelma RH, Morana B, Vollebregt S, Schlangen E, van Zeijl HW, Fan X, Zhang GQ (2014) Tailoring the mechanical properties of high-aspect-ratio carbon nanotube arrays using amorphous silicon carbide coatings. Adv Funct Mater 24(36):5737–5744CrossRefGoogle Scholar
  55. 55.
    Jiang H, Liu B, Huang Y, Hwang KC (2004) Thermal expansion of single wall carbon nanotubes. J Eng Mater Technol 126(3):265CrossRefGoogle Scholar
  56. 56.
    Kim BC, Kannan S, Gupta A, Mohammed F, Ahn B (2010) Development of carbon nanotube based through-silicon vias. J Nanotechnol Eng Med 1(2):021012CrossRefGoogle Scholar
  57. 57.
    Xu C, Li H, Suaya R, Banerjee K (2010) Compact AC modeling and performance analysis of through-silicon vias in 3-D ICs. IEEE Trans Electron Devices 57(12):3405CrossRefGoogle Scholar
  58. 58.
    Xu T, Wang Z, Miao J, Chen X, Tan CM (2007) Aligned carbon nanotubes for through-wafer interconnects. Appl Phys Lett 91(4):042108CrossRefGoogle Scholar
  59. 59.
    Wang T, Olofsson KJN, Campbell EEB, Johan Liu C (2009) Through silicon vias filled with planarized carbon nanotube bundles Nanotechnology 20(48):485203Google Scholar
  60. 60.
    Wang T, Jeppson K, Ye L, Liu J (2011) Carbon-nanotube through-silicon via interconnects for three-dimensional integration Small 7(16):2313Google Scholar
  61. 61.
    Wang X, Feng Y, Unalan HE, Zhong G, Li P, Yu H, Akinwande AI, Milne W (2011) The mechanism of the sudden termination of carbon nanotube supergrowth. Carbon 49:214CrossRefGoogle Scholar
  62. 62.
    Banerjee S (2014) Super-growth of CNTs based on ZrN for TSV application. Master’s thesis, Delft University of TechnologyGoogle Scholar
  63. 63.
    Vollebregt S, Banerjee S, Tichelaar FD, Ishihara R (2015) Carbon nanotubes TSV grown on an electrically conductive ZrN support layer. In: IEEE international interconnect technology conference, pp 281–283Google Scholar
  64. 64.
    Wei H, Patil N, Lin A, Wong HSP, Mitra S (2009) Monolithic three-dimensional integrated circuits using carbon nanotube FETs and interconnects. In: IEEE international electron devices meeting, pp 1–4Google Scholar
  65. 65.
    Patil N, Lin A, Myers ER, Ryu K, Badmaev A, Zhou C, Wong HSP, Mitra S (2009) Wafer-Scale growth and transfer of aligned single-walled carbon nanotubes. IEEE rans Nanotechnol 8(4):498CrossRefGoogle Scholar
  66. 66.
    Santra S, Ali SZ, Guha PK, Zhong G, Robertson J, Covington JA, Milne WI, Gardner J, Udrea F (2010) Post-CMOS wafer level growth of carbon nanotubes for low-cost microsensors a proof of concept. Nanotechnology 21:485301CrossRefGoogle Scholar
  67. 67.
    Duesberg GS, Graham AP, Kreupl F, Liebau M, Seidel R, Unger E, Hoenlein W (2004) Ways towards the scaleable integration of carbon nanotubes into silicon based technology Diam Relat Mater 13:354Google Scholar
  68. 68.
    Vollebregt S, Chiaramonti AN, van der Cingel J, Beenakker K, Ishihara R (2013) Towards the integration of carbon nanotubes as vias in monolithic three-dimensional integrated circuits. Jpn J Appl Phys 52(4):04CB02Google Scholar
  69. 69.
    Mofrad MRT, Derakhshandeh J, Ishihara R, Baiano A, van der Cingel J, Beenakker K (2009) Stacking of single-grain thin-film transistors. Jpn J Appl Phys 48:03B015Google Scholar
  70. 70.
    Derakhshandeh J, Golshani N, Ishihara R, Mofrad MRT, Robertson M, Morrison T, Beenakker CIM (2011) Monolithic 3-D Integration of SRAM and image sensor using two layers of single-grain silicon. IEEE Trans Electron Devices 58(11):3954CrossRefGoogle Scholar
  71. 71.
    Vollebregt S, Ishihara R (2016) The direct growth of carbon nanotubes as vertical interconnects in 3D integrated circuits. Carbon 96:332–338CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of MicroelectronicsDelft University of TechnologyDelftThe Netherlands

Personalised recommendations