Overview of Carbon Nanotubes for Horizontal On-Chip Interconnects

  • Jean DijonEmail author


The extraordinary development of micro- and nano-electronics is based on the brilliant idea of Gordon Moore, Robert Noyce, and others who proposed in the early 1970s a model development based on the shrinking of the integrated structures (transistors, connections) in the chips. This provides a long-term road map for technological development as well as a very efficient economic model. The size reduction, all other aspects being equal, results in performance improvements related to the possibility of making faster and more complex devices on the same area of silicon. Each node, typical scale length of the components, follows the same development cycle with massive investments for production and a return on investment at the end of the cycle related to the fact that better-performing, cheaper devices flood the market. The idea was also that the performance improvement was mostly a continuous process and not based on technological breakthrough at each node. Indeed it is reasonable to anticipate that such breakthroughs take a considerable amount of time to be fully realized and implemented. Initially the performances of the chips were largely limited by the active components which are the transistors. Since the mid-1990s this situation is completely reversed and now the chips are limited by interconnects. These limitations are so serious that they contribute to slowing down the microelectronic road map. A first revolution in the field of interconnects was the replacement of aluminum wires by copper wires and the introduction of low K dielectric materials instead of more conventional ones. To overcome current limitations a new material revolution is probably mandatory. Carbon materials such as carbon nanotubes, thanks to their superlative physical properties, can be the future material of choice.


Contact Resistance Langmuir Blodgett Individual Tube Droplet Density Langmuir Schaefer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Berger C, Yi Y, Wang ZL, de Heer WA (2002) Multiwalled carbon nanotubes are ballistic conductors at room temperature. Appl Phys A 74:363CrossRefGoogle Scholar
  2. 2.
    Jourdain V, Bichara C (2013) Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition. Carbon 58:2–39CrossRefGoogle Scholar
  3. 3.
    Yamada T, Namai T, Hata K, Futaba DN, Mizuno K, Fan J, Yudasaka M, Yumura M, Iijima S (2006) Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts. Nat Nanotechnol 1:131–136CrossRefGoogle Scholar
  4. 4.
    Dijon J, Fournier A, Szkutnik PD, Okuno H, Jayet C, Fayolle M (2010) Carbon nanotubes for interconnects in future integrated circuits: the challenge of the density. Diam Relat Mater 19(5–6):382–288Google Scholar
  5. 5.
    Nessim GD, Hart AJ, Kim JS, Acquaviva D, Oh J, Morgan CD, Seita M, Leib JS, Thompson CV (2008) Tuning of vertically-aligned carbon nanotube diameter and areal density through catalyst pre-treatment. Nano Lett 8(11):3587–3593CrossRefGoogle Scholar
  6. 6.
    Zhong G, Warner JH, Fouquet M, Robertson AW, Chen B, Robertson J (2012) Growth of ultrahigh density single-walled carbon nanotube forests by improved catalyst design. ACS Nano 6(4):2893–2903CrossRefGoogle Scholar
  7. 7.
    Yang J, Esconjauregui S, Robertson AW, Guo Y, Hallam T, Sugime H, Zhong G, Duesberg GS, Robertson J (2015) Growth of high-density carbon nanotube forests on conductive TiSiN supports. Appl Phys Lett 106:083108CrossRefGoogle Scholar
  8. 8.
    Kim SM, Pint CL, Amama PB, Zakharov DN, Hauge RH, Maruyama B, Stach EA (2010) Evolution in catalyst morphology leads to carbon nanotube growth termination. J Phys Chem Lett 1:918–922CrossRefGoogle Scholar
  9. 9.
    Robertson J, Zhong G, Esconjauregui CS, Bayer BC, Zhang C, Fouquet M, Hofmann S (2012) Applications of carbon nanotubes grown by chemical vapor deposition. Jpn J Appl Phys 51:01AH01Google Scholar
  10. 10.
    Jackson R, Grahama S (2009) Specific contact resistance at metal/carbon nanotube interfaces. Appl Phys Lett 94:012109CrossRefGoogle Scholar
  11. 11.
    Koechlin C, Maine S, Haidar R, Trétout B, Loiseau A, Pelouard JL (2010) Electrical characterization of devices based on carbon nanotube films. Appl Phys Lett 96:103501CrossRefGoogle Scholar
  12. 12.
    Franklin AD, Chen Z (2010) Length scaling of carbon nanotube transistors. Nat Nanotechnol 5:858–862CrossRefGoogle Scholar
  13. 13.
    Chiodarelli N, Fournier A, Okuno H, Dijon J (2013) Carbon nanotubes horizontal interconnects with end-bonded contacts, diameters down to 50 nm and lengths up to 20 μm. Carbon 60: 139–145CrossRefGoogle Scholar
  14. 14.
    Chiodarelli N, Delabie A, Masahito S et al (2011) ALD of Al2O3 for carbon nanotube vertical interconnect and its impact on the electrical properties. MRS Proc 1283:46–54CrossRefGoogle Scholar
  15. 15.
    Lee S et al (2011) Integration of carbon nanotube interconnects for full compatibility with semiconductor technologies. J Electrochem Soc 158(11):K193–K196CrossRefGoogle Scholar
  16. 16.
    Santini CA, Volodin A, Van Haesendonck C, De Gendt S, Groeseneken G, Vereecken PM (2011) Carbon nanotube–carbon nanotube contacts as an alternative towards low resistance horizontal interconnects. Carbon 4(9):4004–4012 CrossRefGoogle Scholar
  17. 17.
    Kim S, Kulkarni DD, Rykaczewski K, Henry M, Tsukruk VV, Fedorov AG (2012) Fabrication of an ultra-low resistance ohmic contact to MWCNT–metal interconnect using graphitic carbon by electron beam-induced deposition (EBID). IEEE Trans Nanotechnol 11(6):1223–1230CrossRefGoogle Scholar
  18. 18.
    Zhang Z et al (2010) Sharp reduction in contact resistivities by effective Schottky barrier lowering with silicides as diffusion sources. IEEE Electron Device Lett 31:731–733CrossRefGoogle Scholar
  19. 19.
    Chen KN, Fan A, Tan CS, Reif R (2004) Contact resistance measurement of bonded copper interconnects for three-dimensional integration technology. IEEE Electron Device Lett 25(1):10–12CrossRefGoogle Scholar
  20. 20.
    Chiodarelli N, Li Y, Cott DJ, Mertens S, Peys N, Heyns M, De Gendt S, Groeseneken G, Vereecken PM (2011) Integration and electrical characterization of carbon nanotube via interconnects. Microelectron Eng 88:837–843CrossRefGoogle Scholar
  21. 21.
    Chiodarelli N, Richard O, Bender H, Heyns M, De Gendt S, Groeseneken G, Vereecken PM (2012) Correlation between number of walls and diameter in multiwall carbon nanotubes grown by chemical vapor deposition. Carbon 50:1748–1752CrossRefGoogle Scholar
  22. 22.
    Esconjauregui S, Fouquet M, Bayer BC, Ducati C, Smajda R, Hofmann S, Robertson J (2010) Growth of ultrahigh density vertically aligned carbon nanotube forests for interconnects. ACS Nano 4(12):7431–7436CrossRefGoogle Scholar
  23. 23.
    Dijon J, Okuno H, Fayolle M, Vo T, Pontcharra J, Acquaviva D, Bouvet D, Ionescu AM, Esconjauregui CS, Capraro B, Quesnel E, Robertson J (2010) Ultra-high density carbon nanotubes on Al-Cu for advanced vias. IEDM 2010 IEEE international electron devices meeting, pp 33.4.1–33.4.4Google Scholar
  24. 24.
    Yamazaki Y, Saluma N, Katagiri M, Suzuki M, Sakai T, Sato S, Nihei M, Awano Y (2010) Synthesis of a closely packed carbon nanotube forest by a multi-step growth method using plasma-based chemical vapor deposition. Appl Phys Express 3:55002–55004CrossRefGoogle Scholar
  25. 25.
    Journet C, Maser WK, Bernier P, Loiseau A, Lamyde la Chapelle M, Lefrant S, Deniard P, Leek R, Fischerk JE (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388:756–758CrossRefGoogle Scholar
  26. 26.
    Chhowalla M, Teo KBK, Ducati C, Rupesinghe NL, Amaratunga GAJ, Ferrari AC, Roy D, Robertson J, Milne WI (2001) Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J Appl Phys 90(10):5308–5317CrossRefGoogle Scholar
  27. 27.
    Zhong G, Iwasaki T, Honda K, Furukawa Y, Ohdomari I, Kawarada H (2005) Low temperature synthesis of extremely dense and vertically aligned single-walled carbon nanotubes. Jpn J Appl Phys 44(4A):1558–1561CrossRefGoogle Scholar
  28. 28.
    Pint CL, Pheasant ST, Parra-Vasquez ANG, Horton CC, Xu Y, Hauge RH (2009) Investigation of optimal parameters for oxide-assisted growth of vertically aligned single-walled carbon nanotubes. J Phys Chem C 113:4125CrossRefGoogle Scholar
  29. 29.
    Sato S, Nihei M, Mimura A, Kawabata A, Kondo D, Shioya H, Iwai T, Mishima M, Ohfuti M, Awano Y (2006) Novel approach to fabricating carbon nanotube via interconnects using size-controlled catalyst nanoparticles. In: Proceedings second ITC conference, in Fukuoka, pp230–232Google Scholar
  30. 30.
    Pint CL, Xu Y-Q, Pasquali M, Hauge RH (2008) Formation of highly dense aligned ribbons and transparent films of single-walled carbon nanotubes directly from carpets. ACS Nano 2(9):1871–1878Google Scholar
  31. 31.
    Futaba DN, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S (2006) Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat Mater 5:987–994CrossRefGoogle Scholar
  32. 32.
    Hayamizu Y, Yamada T, Mizuno K, Davis RC, Futaba DN, Yumura M, Hata K (2008) Integrated three-dimensional microelectromechanical devices from processable carbon nanotube wafers. Nat Nanotechnol 3:289CrossRefGoogle Scholar
  33. 33.
    Lu J, Miao J, Xu T, Yan B, Yu T, Shen Z (2011) Growth of horizontally aligned dense carbon nanotubes from trench sidewalls. Nanotechnology 22:265614CrossRefGoogle Scholar
  34. 34.
    Guerin H, Le Poche H, Pohle R, Bernard LS, Buitrago E, Ramos R, Dijon J, Ionescu AM (2014) High-yield, in-situ fabrication and integration of horizontal carbon nanotube arrays at the wafer scale for robust ammonia sensors. Carbon 78:326–338CrossRefGoogle Scholar
  35. 35.
    Wang Y, Maspoch D, Zou S, Schatz G, Smalley R, Mirkin C (2006) Controlling the shape, orientation, and linkage of carbon nanotube features with nano affinity templates. Proc Natl Acad Sci USA 103:2026–2031CrossRefGoogle Scholar
  36. 36.
    Ko H, Tsukruk V (2006) Liquid-crystalline processing of highly oriented carbon nanotube arrays for thin-film transistors. Nano Lett 6:1443–1448CrossRefGoogle Scholar
  37. 37.
    Chen XQ, Saito T, Yamada H, Matsushige K (2001) Aligning single-wall carbon nanotubes with an alternating-current electric field. Appl Phys Lett 78:3714CrossRefGoogle Scholar
  38. 38.
    Vijayaraghavan A, Blatt S, Weissenberger D, Oron-Carl M, Hennrich F, Gerthsen D, Hahn H, Krupke R (2007) Ultra-large-scale directed assembly of single-walled carbon nanotube devices. Nano Lett 7(6):1556–1560CrossRefGoogle Scholar
  39. 39.
    Steiner M, Engel M, Lin Y-M, Wu Y, Jenkins K, Farmer DB, Humes JJ, Yoder NL, Seo J-WT, Green AA et al (2012) High-frequency performance of scaled carbon nanotube array field-effect transistors. Appl Phys Lett 101:053123CrossRefGoogle Scholar
  40. 40.
    Seichepine F, Salomon S, Collet M, Guillon S, Nicu L, Larrieu G, Flahaut E, Vieu C (2012) A combination of capillary and dielectrophoresis-driven assembly methods for wafer scale integration of carbon-nanotube-based nanocarpets. Nanotechnology 23:095303CrossRefGoogle Scholar
  41. 41.
    Cao Q, Han S-J, Tulevski GS, Zhu Y, Lu DD, Haensch W (2013) Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Nat Nanotechnol 8:180–186CrossRefGoogle Scholar
  42. 42.
    Chiodarelli N, Fournier A, Dijon J (2013) Impact of the contact’s geometry on the line resistivity of carbon nanotubes bundles for applications as horizontal interconnects. Appl Phys Lett 103:053115. doi: 10.1063/1.4817648 CrossRefGoogle Scholar
  43. 43.
    Dijon J, Chiodarelli N, Fournier A, Okuno H, Ramos R (2013) Horizontal carbon nanotube interconnects for advanced integrated circuits. Mater Res Soc Symp Proc 1559: © 2013 Materials Research Society. doi: 10.1557/opl.2013
  44. 44.
    Leroy WP, Detavernier C, Van Meirhaeghe RL, Kellock AJ, Lavoie C (2006) Solid-state formation of titanium carbide and molybdenum carbide as contacts for carbon-containing semiconductors. J Appl Phys 99:063704CrossRefGoogle Scholar
  45. 45.
    Zienert A, Schuster J, Gessner T (2014) Metallic carbon nanotubes with metal contacts: electronic structure and transport. Nanotechnology 25:425203. doi: 10.1088/0957-4484/25/42/425203 CrossRefGoogle Scholar
  46. 46.
    Zhang Y, Franklin NW, Chen RJ, Dai H (2000) Metal coating on suspended carbon nanotubes and its implication to metal-tube interaction. Chem PhysLett 331:35–41Google Scholar
  47. 47.
    Kim W et al (2005) Electrical contacts to carbon nanotubes down to 1 nm in diameter. Appl Phys Lett 87:173101CrossRefGoogle Scholar
  48. 48.
    Wang M-S, Golberg D, Bando Y (2010) Superstrong low-resistant carbon nanotube–carbide–metal nanocontacts. Adv Mater 22:5350–5355CrossRefGoogle Scholar
  49. 49.
    Reeves GK, Harrison HB (1982) Obtaining the specific contact resistance from transmission line model measurements. IEEE Electron Device Lett 3:111–113CrossRefGoogle Scholar
  50. 50.
    Solomon PM (2011) Contact resistance to a one-dimensional quasi-ballistic nanotube/wire. IEEE Electron Device Lett 32:246–248CrossRefGoogle Scholar
  51. 51.
    Casparis L (2010) Conductance anisotropy in natural and HOPG graphite. Master Thesis, University of BaselGoogle Scholar
  52. 52.
    Primak W (1956) C-axis electrical conductivity of graphite. Phys Rev 103:544CrossRefGoogle Scholar
  53. 53.
    Yoon YG, Delaney P, Louie SG (2002) Quantum conductance of multiwall carbon nanotubes. Phys Rev B 66:073407CrossRefGoogle Scholar
  54. 54.
    Bourlon B, Miko C, Forro L, Glattli DC, Bachtold A (2004) Determination of the intershell conductance in multiwalled carbon nanotubes. Phys Rev Lett 93(17):176806CrossRefGoogle Scholar
  55. 55.
    Chai Y, Hazeghi A, Takei K, Chen H-Y, Chan PCH, Javey A, Wong HSP (2010) Graphitic interfacial layer to carbon nanotube for low electrical contact resistance. IEDM, San Francisco, pp 210–213Google Scholar
  56. 56.
    Lin A (2010) Carbon nanotube synthesis device fabrication, and circuit design for digital logic applications. PhD Thesis, Stanford UniversityGoogle Scholar
  57. 57.
    Li H, Liu W, Cassell AM, Kreupl F, Banerjee K (2013) Low-resistivity long-length horizontal carbon nanotube bundles for interconnect applications—part II: characterization. IEEE Trans Electron Devices 60(9):2870CrossRefGoogle Scholar
  58. 58.
    Tawfick S, O’Brien K, Hart AJ (2009) Flexible high-conductivity carbon-nanotube interconnects made by rolling and printing. Small 5(21):2467–2473CrossRefGoogle Scholar
  59. 59.
    Kim YL, Li B, An X, Hahm MG, Chen L, Washington M, Ajayan PM, Nayak SK, Busnaina A, Kar S, Jung YJ (2009) Highly aligned scalable platinum-decorated single-wall carbon nanotube arrays for nanoscale electrical interconnects. ACS Nano 3:2818–2826CrossRefGoogle Scholar
  60. 60.
    Dijon J, Ramos R, Fournier A, Le Poche H, Fournier H, Okuno H, Simonato JP (2014) Record resistivity of in-situ grown horizontal carbon nanotube interconnect. In: Technical proceedings of the 2014 NSTI nanotechnology conference and expo, NSTI-Nanotech 2014, vol 3, pp 17–20Google Scholar
  61. 61.
    Close GF, Wong H-SP (2008) Assembly and electrical characterization of multiwall carbon nanotube interconnects. IEEE Trans Nanotechnol 7(5):596–600CrossRefGoogle Scholar
  62. 62.
    Pint CL, Xu Y-Q, Morosan E, Hauge RH (2009) Alignment dependence of one-dimensional electronic hopping transport observed in films of highly aligned, ultralong single-walled carbon nanotubes. Appl Phys Lett 94:182107CrossRefGoogle Scholar
  63. 63.
    Behabtu N, Young CC, Tsentalovich DE, Kleinerman O et al (2013) Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 339:182–185CrossRefGoogle Scholar
  64. 64.
    Zhao Y, Wei J, Vajtai R, Ajayan PM, Barrera EV (2011) Iodine doped carbon nanotube cables exceeding specific electrical conductivity of metals. Sci Rep 83:1–5. doi: 10.1038/srep00083 Google Scholar
  65. 65.
    Wang JN et al (2014) High-strength carbon nanotube fibre-like ribbon with high ductility and high electrical conductivity. Nat Commun 5:3848. doi: 10.1038/ncomms4848 Google Scholar
  66. 66.
    Liu K, Sun Y, Zhou R, Zhu H, Wang J, Liu L, Fan S, Jiang K (2010) Carbon nanotube yarns with high tensiles strength made by a twisting and shrinking method. Nanotechnology 21:045708. doi: 10.1088/0957-4484/21/4/045708 CrossRefGoogle Scholar
  67. 67.
    Wei J, Ci L, Jiang B, Li Y, Zhang X, Zhu H, Xua C, Wua D (2003) Preparation of highly pure double-walled carbon nanotubes. J Mater Chem 13:1340–1344CrossRefGoogle Scholar
  68. 68.
    Bedewy M, Meshot ER, John Hart A (2012) Diameter-dependent kinetics of activation and deactivation in carbon nanotube population growth. Carbon 50:5106–5116CrossRefGoogle Scholar
  69. 69.
    Collins PG, Hersam M, Arnold M, Martel R, Avouris P (2001) Current saturation and electrical breakdown in multiwalled carbon nanotubes. Phys Rev Lett 86(14):3128–3131CrossRefGoogle Scholar
  70. 70.
    Wei BQ et al (2001) Reliability and current carrying capacity of carbon nanotubes. Appl Phys Lett 79:1172–1174CrossRefGoogle Scholar
  71. 71.
    Yang Y, Murali R (2010) Impact of size effect on graphene nanoribbon transport. IEEE Electron Device Lett 31:237–239CrossRefGoogle Scholar
  72. 72.
    Li S, Yu Z, Yen SF, Tang WC, Burke PJ (2004) Carbon nanotube transistor operation at 2.6 GHz. Nano Lett 4(4):753–756CrossRefGoogle Scholar
  73. 73.
    Mann D, Javey A, Kong J, Wang Q, Dai H (2003) Ballistic transport in metallic nanotubes with reliable Pd ohmic contacts. Nano Lett 3(11):1541–1544CrossRefGoogle Scholar
  74. 74.
    Ebbessen TW, Lezec HJ, Hiura H, Bennet JW, Ghaemi HF, Thio T (1996) Electrical conductivity of individual carbon nanotubes. Nature 382:54–56CrossRefGoogle Scholar
  75. 75.
    Kreupl F, Graham AP, Duesberg GS, Steinhögl W, Liebau M, Unger E, Hönlein W (2002) Carbon nanotubes in interconnects applications. Microelectron Eng 64:399–408CrossRefGoogle Scholar
  76. 76.
    Bachtold A, Fuhrer MS, Plyasunov S, Forero M, Anderson EH, Zettl A, McEuen PL (2000) Scanned probe microscopy of electronic transport in carbon nanotubes. Phys Rev Lett 84:6082CrossRefGoogle Scholar
  77. 77.
    Naeemi A, Meindl JD (2006) Compact physical models for multiwall carbon-nanotube interconnects. IEEE Electron Device Lett 27(5):338–340CrossRefGoogle Scholar
  78. 78.
    Rutherglen C, Jain D, Burke P (2009) Nanotube electronics for radiofrequency applications. Nat Nanotechnol 4:811CrossRefGoogle Scholar
  79. 79.
    Ding L, Yuan D, Liu J (2008) Growth of high-density parallel arrays of long single-walled carbon nanotubes on quartz substrates. J Am Chem Soc 130:5428 CrossRefGoogle Scholar
  80. 80.
    Ibrahim I, Bachmatiuk A, Börrnert F, Blüher J, Zhang S, Wolff U, Büchner B, Cuniberti G, Rümmeli MH (2011) Optimizing substrate surface and catalyst conditions for high yield chemical vapor deposition grown epitaxially aligned single-walled carbon nanotubes. Carbon 49:5029CrossRefGoogle Scholar
  81. 81.
    Zhou W, Ding L, Yang S, Liu J (2011) Synthesis of high-density, large-diameter, and aligned single-walled carbon nanotubes by multiple-cycle growth methods. ACS Nano 5(5): 3849–3857CrossRefGoogle Scholar
  82. 82.
    Hu Y et al (2015) Growth of high-density horizontally aligned SWNT arrays using Trojan catalysts. Nat Commun 6:6099. doi: 10.1038/ncomms7099 CrossRefGoogle Scholar
  83. 83.
    Hou P-X, Li W-S, Zhao S-Y, Li G-X, Shi C, Liu C, Cheng H-M (2014) Preparation of metallic single-wall carbon nanotubes by selective etching. ACS Nano 8(7):7156–7162CrossRefGoogle Scholar
  84. 84.
    Wang Y, Liu Y, Li X, Cao L, Wei D, Zhang H, Shi D, Yu G, Kajiura H, Li Y (2007) Direct enrichment of metallic single-walled carbon nanotubes induced by the different molecular composition of monohydroxy alcohol homologues. Small 3:1486CrossRefGoogle Scholar
  85. 85.
    Patil N, Lin A, Myers ER, Ryu K, Badmeav A, Zhu C, Wong H-SP, Mitra S (2009) Wafer-scale growth and transfer of aligned single-walled carbon nanotubes. IEEE Trans Nanotechnol 8(4):498–504CrossRefGoogle Scholar
  86. 86.
    Choi WJ, Chung YJ, Kim YH, Han J, Lee Y-K, Kong K, Chang H, Lee YK, Kim BG, Lee J-O (2014) Drawing circuits with carbon nanotubes: scratch-induced graphoepitaxial growth of carbon nanotubes on amorphous silicon oxide substrates. Sci Report 4:5289. doi: 10.1038/srep05289 Google Scholar
  87. 87.
    Yu Q, Qin G, Li H et al (2006) Mechanism of horizontally aligned growth of single-wall carbon nanotubes on R-plane sapphire. J Phys Chem B 110:22676–22680CrossRefGoogle Scholar
  88. 88.
    Huang S, Woodson M, Smalley R, Liu J (2004) Growth mechanism of oriented long single walled carbon nanotubes using fast-heating chemical vapor deposition process. Nano Lett 4(6):1025–1028CrossRefGoogle Scholar
  89. 89.
    Terrones M, Ajayan PM et al (2002) N-doping and coalescence of carbon nanotubes: synthesis and electronic properties. Appl Phys A 74:355–361CrossRefGoogle Scholar
  90. 90.
    Dresselhaus MS, Dresselhaus G (2002) Intercalation compounds of graphite. Adv Phys 51(1):1–186. doi: 10.1080/00018730110113644 CrossRefGoogle Scholar
  91. 91.
    Esconjauregui S, D’Arsie L, Guo Y, Yang J, Sugime H, Caneva S, Cepek C, Robertson J (2015) Efficient transfer doping of carbon nanotube forests by MoO3. ACS Nano 9(10):10422–10430CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.CEA-LITEN/DTNM, Commissariat à l’énergie atomique et aux énergies alternativesGrenoble cedex 9France

Personalised recommendations