Advertisement

Overview of Carbon Nanotube Interconnects

  • A. SrivastavaEmail author
  • X. H. Liu
  • Y. M. Banadaki
Chapter

Abstract

At present, electronic information technology has become an important drive force that promotes social and economic progress. Integrated circuit (IC) as a core and foundation of the electronic information technology has a great influence on the daily life of human being. The semiconductor technology and IC industry have become an important symbol to embody a country’s comprehensive scientific and technological capability. In order to improve circuit’s performance and increase number of transistors on a chip, microelectronic devices have been continuously reduced in dimension according to Moore’s law [1] and scaling rule [2]. According to the 2013 International Technology Roadmap for Semiconductors (ITRS 2013), the feature size of semiconductor devices will reduce to 22 nm in 2016 and 10 nm in 2025 [3] in very large scale integrated (VLSI) circuits. For the first generation interconnect material aluminum (Al) [4], an increase in electric resistance and capacitance due to increasing wire length and decreasing wire interval as dimension scales down had led to large signal delays [5] and poor tolerance to electromigration (EM) [6]. Because of its lower resistivity, higher melting point (1083 °C versus 660 °C of Al), and longer EM lifetime [7], copper (Cu) has replaced Al as an interconnect material in the 180 nm technology node [8] and beyond. But as interconnects scale down to the 45 nm and beyond technology generations, Cu interconnect is also facing similar problems with those of Al interconnects encountered, including increase in resistivity due to size effect [9], increase in power consumption [10], delay [11], and EM distress [12].

Keywords

Contact Resistance Highly Orient Pyrolytic Graphite Very Large Scale Integrate Mean Free Path Technology Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Moore GE (1965) Cramming more components onto integrated circuits. Electron Mag 38:114–117Google Scholar
  2. 2.
    Dennard RH, Rideout VL, Gaensslen FH, Yu HN, Rideout VL, Bassous E, Leblanc AR (1974) Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J Solid-State Circuits SC-9:256–268CrossRefGoogle Scholar
  3. 3.
    International Technology Roadmap for Semiconductors (2013) http://www.itrs.net/link/2013ITRS/Home2013.htm
  4. 4.
    Vadasz LL, Grove AS, Rowe TA, Moore GE (1969) Silicon-gate technology. IEEE Spectr 6:28–35CrossRefGoogle Scholar
  5. 5.
    Meindl JD (2003) Beyond Moore’s law: the interconnect era. Comput Sci Eng 5:20–24CrossRefGoogle Scholar
  6. 6.
    Solanki R, Pathangey B (2000) Atomic layer deposition of copper seed layers. Electrochem Solid-State Lett 3(10):479–480CrossRefGoogle Scholar
  7. 7.
    Hu CK, Harper JME (1998) Copper interconnections and reliability. Mater Chem Phys 52:5–16CrossRefGoogle Scholar
  8. 8.
    Yamada M, Yagi H, Sugatani S, Miyajima M, Matsunaga D, Hosoda T, Kudo H, Misawa N, Nakamura T (1999) Cu interconnect technologies in Fujitsu and problems in installing Cu equipment in an existing semiconductor manufacturing line. Proceedings of the IEEE 1999 International Interconnect Technology Conference, San Francisco, pp 115–115, 24–26 May 1999Google Scholar
  9. 9.
    Steinlesberger G, Engelhardt M, Schindlera G, Steinhogl W, Glasow AV, Mosig K, Bertagnolli E (2002) Electrical assessment of copper damascene interconnects down to sub-50 nm feature sizes. Microelectron Eng 64:409–416CrossRefGoogle Scholar
  10. 10.
    International Technology Roadmap for Semiconductors (ITRS) (2007) http://www.itrs.net/Links/2007ITRS/Home2007.htm
  11. 11.
    Koo KH, Kapur P, Saraswat KC (2009) Compact performance models and comparisons for gigascale on-chip global interconnect technologies. IEEE Trans Electron Devices 56(9):1787–1798CrossRefGoogle Scholar
  12. 12.
    Arnaud L, Cacho F, Doyen L, Terrier F, Galpin D, Monget C (2010) Analysis of electromigration induced early failures in Cu interconnects for 45 nm node. Microelectron Eng 87:355–360CrossRefGoogle Scholar
  13. 13.
    Sondheimer EH (1952) The mean free path of electrons in metals. Adv Phys 1:1–42zbMATHCrossRefGoogle Scholar
  14. 14.
    Mayadas AF, Shatzkes M (1970) Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces. Phys Rev B1:1382–1389CrossRefGoogle Scholar
  15. 15.
    Steinhoegl W, Schindler G, Steinlesberger G, Engelhardt M (2002) Size-dependent resistivity of metallic wires in the mesoscopic range. Phys Rev B 66:075414-1-4Google Scholar
  16. 16.
    Rossnagel SM, Kuan TS (2004) Alteration of copper conductivity in the size effect regime. J Vac Sci Technol B: Microelectron Nanometer Struct 22:240–247CrossRefGoogle Scholar
  17. 17.
    Wen W, Maex K (2001) Studies on size effect of copper interconnect lines. In: 2001 Proceedings of the 6th international conference on solid-state and integrated-circuit technology (ICSICT), vol 1, pp 416–418Google Scholar
  18. 18.
    Kim CU, Park J, Michael N, Gillespie P, Augur R (2003) Study of electron-scattering mechanism in nanoscale copper interconnects. J Electron Mater 32(10):982–987CrossRefGoogle Scholar
  19. 19.
    Ryu C, Kwon KW, Loke ALS, Lee H, Nogami T, Dubin VM, Kavari RA, Ray GW, Wong SS (1999) Microstructure and reliability of copper interconnects. IEEE Trans Electron Devices 46(6):1113–1120CrossRefGoogle Scholar
  20. 20.
    Tokei Z, Croes K, Beyer GP (2010) Reliability of copper low-k interconnects. Microelectron Eng 87:348–354CrossRefGoogle Scholar
  21. 21.
    Kizil H, Kim G, Chel CS, Zhao B (2001) TiN and TaN diffusion barriers in copper interconnect technology: towards a consistent testing methodology. J Electron Mater 30(4):345–348CrossRefGoogle Scholar
  22. 22.
    Wang H, Gupta A, Tiwarii A, Zhang X, Narayan J (2003) TaN-TiN binary alloys and superlattices as diffusion barriers for copper interconnects. J Electron Mater 32(10):994–999CrossRefGoogle Scholar
  23. 23.
    Das D, Rahaman H (2012) Modeling of single-wall carbon nanotube interconnects for different process, temperature, and voltage conditions and investigating timing delay. J Comput Electron 11:349–363CrossRefGoogle Scholar
  24. 24.
    Moon DY, Kwon TS, Kang BW, Kim WS, Kim BM, Kim JH, Park JW (2010) Copper seed layer using atomic layer deposition for Cu interconnect. In: 2010 3rd international nanoelectronics conference (INEC), pp 450–451Google Scholar
  25. 25.
    Rakheja S, Naeemi A (2011) Modeling interconnects for post-CMOS devices and comparison with copper interconnects. IEEE Trans Electron Devices 58(5):1319–1328CrossRefGoogle Scholar
  26. 26.
    Li B, Christiansen C, Badami D, Yang CC (2014) Electromigration challenges for advanced on-chip copper interconnects. Microelectron Reliab 54:712–724CrossRefGoogle Scholar
  27. 27.
    Chan YC, Yang D (2010) Failure mechanisms of solder interconnects under current stressing in advanced electronic packages. Prog Mater Sci 55(5):428–475Google Scholar
  28. 28.
    Hu CK, Gignac L, Rosenberg R (2006) Electromigration of copper/low dielectric constant interconnects. Microelectron Reliab 46:213–231CrossRefGoogle Scholar
  29. 29.
    Huntington HB, Grone AR (1961) Current-induced marker motion in gold wires. J Phys Chem Solid 20(1–2):76–87CrossRefGoogle Scholar
  30. 30.
    Stangl M, Lipták M, Acker J, Hoffmann V, Baunack S, Wetzig K (2009) Influence of incorporated non-metallic impurities on electromigration in copper damascene interconnect lines. Thin Solid Films 517:2687–2690CrossRefGoogle Scholar
  31. 31.
    Li B, Christiansen C, Gill J, Sullivan T (2006) Threshold electromigration failure time and its statistics for copper interconnects. J Appl Phys 100:114516-1-10Google Scholar
  32. 32.
    Hu CK, Gignac LM, Liniger E, Huang E, Greco S, McLaughlin P, Yang CC, Demarest JJ (2009) Electromigration challenges for nanoscale Cu wiring. AIP Conf Proc 1143(1):3–11CrossRefGoogle Scholar
  33. 33.
    Galand R, Brunetti G, Arnaud L, Rouviere JL, Ciement L, Walta P, Wouters Y (2013) Microstructural void environment characterization by electron imaging in 45 nm technology node to link electromigration and copper microstructure. Microelectron Eng 106:168–171CrossRefGoogle Scholar
  34. 34.
    Roy A, Hou Y, Tan CM (2009) Electromigration in width transition copper interconnect. Microelectron Reliab 49(9-11):1086–1089CrossRefGoogle Scholar
  35. 35.
    Lin MH, Lin MT, Wang T (2008) Effects of length scaling on electromigration in dual-damascene copper interconnects. Microelectron Reliab 48(4):569–577CrossRefGoogle Scholar
  36. 36.
    Mishra JK, Priye V (2014) Design of low crosstalk and bend insensitive optical interconnect using rectangular array multicore fiber. Opt Commun 331:272–277CrossRefGoogle Scholar
  37. 37.
    Fazzi A, Magagni L, Mirandola M, Charlet B, Cioccio LD, Jung E, Canegallo R, Guerrieri R (2007) 3D capacitive interconnections for wafer-level and die-level assembly. IEEE J Solid State Circuits 42(10):2270–2282CrossRefGoogle Scholar
  38. 38.
    Miura N, Kohama Y, Sugimori Y, Ishikuro H, Sakurai T, Kuroda T (2009) A high speed inductive-coupling link with burst transmission. IEEE J Solid State Circuits 44:947–955CrossRefGoogle Scholar
  39. 39.
    Sasaki N, Kimoto K, Moriyama W, Kikkawa T (2009) A single-chip ultra-wideband receiver with silicon integrated antennas for inter-chip wireless interconnection. IEEE J Solid State Circuits 44(2):382–393CrossRefGoogle Scholar
  40. 40.
    Paik KW, Mogro-Campero A (1994) Studies on the high-temperature superconductor (HTS)/metal/polymer dielectric interconnect structure for packaging applications. IEEE Trans Compon Packg Manuf Technol Part B 17(3):435–441CrossRefGoogle Scholar
  41. 41.
    Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605CrossRefGoogle Scholar
  42. 42.
    Bethune DS, Kiang CH, Beyers R (1993) Cobalt-catalyzed growth of carbon nanotubes with single-atomic layer walls. Nature 363:605–607CrossRefGoogle Scholar
  43. 43.
    Ijima S (1991) Helical microtubes of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  44. 44.
    Saito R, Dresslhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College Press, London, UKCrossRefGoogle Scholar
  45. 45.
    Dresselhaus MS, Dresselhaus G, Avouris P (2001) Carbon nanotube: synthesis, properties, structure, and applications. Springer, BerlinCrossRefGoogle Scholar
  46. 46.
    Wilder JWG, Venema LC, Rinzler AG, Smalley RE, Dekker C (1998) Electronic structure of atomically resolved carbon nanotubes. Nature 391:59–62CrossRefGoogle Scholar
  47. 47.
    White CT, Roberston DH, Mintmire JW (1993) Helical and rotational symmetries of nanoscale graphitic tubules. Phys Rev B 47:5485–5488CrossRefGoogle Scholar
  48. 48.
    Saito R, Fujita M, Dresselhaus G, Dresselhaus MS (1992) Electronic structure of graphene tubules based on C60. Phys Rev B 46:1804–1811CrossRefGoogle Scholar
  49. 49.
    Zólyomi V, Koltai J, Rusznyák Á, Kürti J, Gali Á, Simon F, Kuzmany H, Szabados Á, Surján PR (2008) Intershell interaction in double walled carbon nanotubes: charge transfer and orbital mixing. Phys Rev B 77(24):245403-1-6CrossRefGoogle Scholar
  50. 50.
    Kong J, Yenilmez E, Tombler TW, Kim W, Dai H, Laughlin RB, Liu L, Jayanthi CS, Wu SY (2001) Quantum interference and ballistic transmission in nanotube electron waveguides. Phys Rev Lett 87:106801-1-4Google Scholar
  51. 51.
    Schönenberger C, Bachtold A, Strunk C, Salvetat JP, Forr L (1999) Interference and interaction in multiwall carbon nanotubes. Appl Phys A 69:283–295CrossRefGoogle Scholar
  52. 52.
    Bachtold A, Fuhrer MS, Plyasunov S, Forero M, Anderson EH, Zettl A, McEuen PL (2000) Scanned probe microscopy of electronic transport in carbon nanotubes. Phys Rev Lett 84(26):6082–6085CrossRefGoogle Scholar
  53. 53.
    White CT, Todorov TN (1998) Carbon nanotube as long ballistic conductors. Nature 393(6682):240–242CrossRefGoogle Scholar
  54. 54.
    Li H, Srivastava N, Mao JF, Yin WY, Banerjee K (2011) Carbon nanotube vias: does ballistic electron–phonon transport imply improved performance and reliability? IEEE Trans Electron Device 58(8):2689–2701CrossRefGoogle Scholar
  55. 55.
    McEuen PL, Fuhrer MS, Park H (2002) Single-walled carbon nanotube electronics. IEEE Trans Nanotechnol 1(1):78–85CrossRefGoogle Scholar
  56. 56.
    Purewal MS, Hong BH, Ravi A, Chandra B, Hone J, Kim P (2007) Scaling of resistance and electron mean free path of single-walled carbon nanotubes. Phys Rev Lett 98:186808-1-4Google Scholar
  57. 57.
    Frank S, Poncharal P, Wang ZL, de Heer WA (1998) Carbon nanotube quantum resistors. Science 280:1744–1746CrossRefGoogle Scholar
  58. 58.
    Yi W, Lu L, Zhang DL, Pan ZW, Xie SS (1999) Linear specific heat of multiwall carbon nanotubes. Phys Rev B 59:R9015–R9018CrossRefGoogle Scholar
  59. 59.
    Li HJ, Lu WG, Li JJ, Bai XD, Gu CZ (2005) Multichannel ballistic transport in multiwall carbon nanotubes. Phys Rev Lett 95:086601-1-4Google Scholar
  60. 60.
    Appenzeller J, Martel R, Avouris P, Stahl H, Lengeler B (2001) Optimized contact configuration for the study of transport phenomena in ropes of single-wall carbon nanotubes. Appl Phys Lett 78(21):3313–3315CrossRefGoogle Scholar
  61. 61.
    Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381:678–680CrossRefGoogle Scholar
  62. 62.
    Salvetat JP, Bonard JM, Thomson NH, Kulik AJ, Forr´o L, Benoit W, Zuppiroli L (1999) Mechanical properties of carbon nanotubes. Appl Phys A 69:255–260Google Scholar
  63. 63.
    Li F, Cheng HM, Bai S, Su G, Dresselhaus MS (2000) Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes. Appl Phys Lett 77(20):3161–3163CrossRefGoogle Scholar
  64. 64.
    Wei B, Spolenak R, Kohler-Redlich P, Ruhle M, Arzt E (1999) Electrical transport in pure and boron-doped carbon nanotubes. Appl Phys Lett 74(21):3149–3151CrossRefGoogle Scholar
  65. 65.
    Yao Z, Kane CL, Dekker C (2000) High field electrical transport in single-wall carbon nanotubes. Phys Rev Lett 84(13):2941–2944CrossRefGoogle Scholar
  66. 66.
    Wei BQ, Vajtai R, Ajayan PM (2001) Reliability and current carrying capacity of carbon nanotubes. App Phys Lett 79(8):1172–1174CrossRefGoogle Scholar
  67. 67.
    Berber S, Kwon YK, Tomanek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84(20):4613–4616CrossRefGoogle Scholar
  68. 68.
    Cao A, Qu J (2012) Size dependent thermal conductivity of single-walled carbon nanotubes. J Appl Phys 112:013503-1-9Google Scholar
  69. 69.
    Imtani AN (2013) Thermal conductivity for single-walled carbon nanotubes from Einstein relation in molecular dynamics. J Phys Chem Solid 74:1599–1603CrossRefGoogle Scholar
  70. 70.
    Bhattacharya S, Amalraj R, Mahapatra S (2011) Physics-based thermal conductivity model for metallic single-walled carbon nanotube interconnects. IEEE Electron Device Letts 32(2):203–205CrossRefGoogle Scholar
  71. 71.
    Che J, Cagin T, Goddard WA III (2000) Thermal conductivity of carbon nanotubes. Nanotechnology 11:65–69CrossRefGoogle Scholar
  72. 72.
    Mingo N, Broido DA (2005) Length dependence of carbon nanotube thermal conductivity and the “problem of long waves”. Nano Lett 5(7):1221–1225CrossRefGoogle Scholar
  73. 73.
    Qiu B, Wang Y, Zhao Q, Ruan X (2012) The effects of diameter and chirality on the thermal transport in free-standing and supported carbon-nanotubes. Appl Phys Lett 100:233105-1-4Google Scholar
  74. 74.
    Hata T, Kawai H, Ohto T, Yamashita K (2013) Chirality dependence of quantum thermal transport in carbon nanotubes at low temperatures: a first-principles study. J Chem Phys 139:044711-1-8Google Scholar
  75. 75.
    Yu C, Shi L, Yao Z, Li D, Majumdar A (2005) Thermal conductance and thermopower of an individual single-wall carbon Nanotube. Nano Lett 5(9):1842–1846CrossRefGoogle Scholar
  76. 76.
    Pop E, Mann D, Wang Q, Goodson K, Dai H (2006) Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett 6(1):96–100CrossRefGoogle Scholar
  77. 77.
    Wang ZL, Tang DW, Li XB, Zheng XH, Zhang WG, Zheng LX, Zhu YT, Jin AZ, Yang HF, Gu CZ (2007) Length-dependent thermal conductivity of an individual single-wall carbon nanotube. Appl Phys Lett 91:123119-1-3Google Scholar
  78. 78.
    Fujii M, Zhang X, Xie H, Ago H, Takahashi K, Ikuta T, Abe H, Shimizu T (2005) Measuring the thermal conductivity of a single carbon nanotube. Phys Rev Lett 95:065502-1-4Google Scholar
  79. 79.
    Kim P, Shi L, Majumdar A, McEuen PL (2001) Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett 87(21):215502-1-5Google Scholar
  80. 80.
    Naeemi A, Meindl JD (2007) Design and performance modeling for single-walled carbon nanotubes as local, semiglobal, and global interconnects in gigascale integrated systems. IEEE Trans Elec Dev 54(1):26–37CrossRefGoogle Scholar
  81. 81.
    Pu SN, Yin WY, Mao JF, Liu QH (2009) Crosstalk prediction of single- and double-walled carbon-nanotube (SWCNT/DWCNT) bundle interconnects. IEEE Trans Elec Dev 56(4):560–568CrossRefGoogle Scholar
  82. 82.
    Plombon JJ, O’Brien KP, Gstrein F, Dubin VM (2007) High-frequency electrical properties of individual and bundled carbon nanotubes. Appl Phys Lett 90:063106-1-3Google Scholar
  83. 83.
    Koo KH, Cho H, Kapur P, Saraswat KC (2007) Performance comparisons between carbon nanotubes, Optical, and Cu for future high-performance on-chip interconnect applications. IEEE Trans Electron Devices 54(12):3206–3215CrossRefGoogle Scholar
  84. 84.
    Li H, Banerjee K (2009) High frequency analysis of carbon nanotube interconnects and implications for on-chip inductor design. IEEE Trans Electron Devices 56(10):2202–2214CrossRefGoogle Scholar
  85. 85.
    Li H, Xu C, Srivastava N, Banerjee K (2009) Carbon nanomaterials for next-generation interconnects and passives: physics, status, and prospects. IEEE Trans Electron Devices 56(9):1799–1821CrossRefGoogle Scholar
  86. 86.
    Close GF, Yasuda S, Paul B, Fujita S, Wong HSP (2008) A 1 GHz integrated circuit with carbon nanotube interconnects and silicon transistors. Nano Lett 8(2):706–709CrossRefGoogle Scholar
  87. 87.
    Collins PG, Hersam M, Arnold M, Martel R, Avouris P (2001) Current saturation and electrical breakdown in multiwalled carbon nanotubes. Phys Rev Lett 86:3128–3131CrossRefGoogle Scholar
  88. 88.
    Srivastava N, Li H, Kreupl F, Banerjee K (2009) On the applicability of single-walled carbon nanotubes as VLSI interconnects. IEEE Trans Nanotechnol 8(4):542–559CrossRefGoogle Scholar
  89. 89.
    Graham AP, Duesberg GS, Hoenlein W, Kreupl F, Liebau M, Martin R, Rajasekharan B, Pamler W, Seidel R, Steinhoegl W, Unger E (2005) How do carbon nanotubes fit into the semiconductor roadmap. Appl Phys A 80:1141–1151CrossRefGoogle Scholar
  90. 90.
    Srivastava A, Xu Y, Sharma AK (2010) Carbon nanotubes for next generation very large scale integration interconnects. J Nanophotonics 4:1–26CrossRefGoogle Scholar
  91. 91.
    Xu Y, Srivastava A (2010) A model for carbon nanotube interconnects. Int J Circ Theor Appl 38:559–575zbMATHGoogle Scholar
  92. 92.
    Naeemi A, Meindl JD (2006) Compact physical models for multiwall carbon interconnects. IEEE Electron Device Lett 27(5):338–340CrossRefGoogle Scholar
  93. 93.
    Naeemi A, Meindl JD (2008) Performance modeling for single- and multiwall carbon nanotubes as signal and power interconnects in gigascale systems. IEEE Trans Electron Devices 55(10):2574–2582CrossRefGoogle Scholar
  94. 94.
    Massoud Y, Nieuwoudt A (2006) Modeling and design challenges and solutions for carbon nanotube-based interconnect in future high performance integrated circuits. ACM J Emerg Technol Comput Syst 2(3):155–196CrossRefGoogle Scholar
  95. 95.
    War JW, Nichols J, Stachowiak TB, Ngo Q, Egerton EJ (2012) Reduction of CNT interconnect resistance for the replacement of Cu for future technology nodes. IEEE Trans Nanotechnol 11(1):56–62CrossRefGoogle Scholar
  96. 96.
    Li H, Yin WY, Banerjee K, Mao JF (2008) Circuit modeling and performance analysis of multi-walled carbon nanotube interconnects. IEEE Trans Electron Devices 55(6):1328–1337CrossRefGoogle Scholar
  97. 97.
    Kurdahi FJ, Pasricha S, Dutt N (2010) Evaluating carbon nanotube global interconnects for chip multiprocessor applications. IEEE Trans Very Large Scale Integr Syst 18(9):1376–1380CrossRefGoogle Scholar
  98. 98.
    Nieuwoudt A, Massoud Y (2008) On the optimal design, performance, and reliability of future carbon nanotube-based interconnect solutions. IEEE Trans Electron Devices 55(8):2097–2110CrossRefGoogle Scholar
  99. 99.
    Haji-Nasiri S, Faez R, Moravvej-Farshi MK (2012) Stability analysis in multiwall carbon nanotube bundle interconnects. Microelectron Reliab 52:3026–3034zbMATHCrossRefGoogle Scholar
  100. 100.
    Tseng YC, Xuan P, Javey A, Malloy R, Wang Q, Bokor J, Dai H (2004) Monolithic integration of carbon nanotube devices with silicon MOS technology. Nano Lett 4(1):123–127CrossRefGoogle Scholar
  101. 101.
    Novoselov KS, Geim AK, Morozov S, Jiang D, Zhang Y, Dubonos S (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRefGoogle Scholar
  102. 102.
    Banadaki YM, Srivastava A (2015) Scaling effects on static metrics and switching attributes of graphene nanoribbon FET for emerging technology. IEEE Trans Emerg Top Comput 3:458–469CrossRefGoogle Scholar
  103. 103.
    Obradovic B, Kotlyar R, Heinz F, Matagne P, Rakshit T, Giles MD, Stettler MA, Nikonov DE (2006) Analysis of graphene nanoribbons as a channel material for field-effect transistors. Appl Phys Lett 88:142102-1-3Google Scholar
  104. 104.
    Rakheja S, Kumar V, Naeemi A (2013) Evaluation of the potential performance of graphene nanoribbons as on-chip interconnects. Proc IEEE 101:1740–1765CrossRefGoogle Scholar
  105. 105.
    Meric I, Han MY, Young AF, Ozyilmaz B, Kim P, Shepard KL (2008) Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat Nanotechnol 3:654–659CrossRefGoogle Scholar
  106. 106.
    Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRefGoogle Scholar
  107. 107.
    Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRefGoogle Scholar
  108. 108.
    Banadaki YM, Mohsin K, Srivastava A (2014) A graphene field effect transistor for high temperature sensing applications. In: SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, pp 90600F-90600F-7Google Scholar
  109. 109.
    Sarma SD, Adam S, Hwang E, Rossi E (2011) Electronic transport in two-dimensional graphene. Rev Mod Phys 83:407–470CrossRefGoogle Scholar
  110. 110.
    Berger C, Song Z, Li X, Wu X, Brown N, Naud C (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312:1191–1196CrossRefGoogle Scholar
  111. 111.
    Han MY, Özyilmaz B, Zhang Y, Kim P (2007) Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett 98:206805CrossRefGoogle Scholar
  112. 112.
    Banadaki YM, Srivastava A (2015) Investigation of the width-dependent static characteristics of graphene nanoribbon field effect transistors using non-parabolic quantum-based model. Solid State Electron 111:80–90Google Scholar
  113. 113.
    Nakada K, Fujita M, Dresselhaus G, Dresselhaus MS (1996) Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys Rev B 54:17954CrossRefGoogle Scholar
  114. 114.
    Naeemi A, Meindl JD (2008) Performance benchmarking for graphene nanoribbon, carbon nanotube, and Cu interconnects. In: 2008 International Interconnect Technology Conference, IITC 2008, pp 183–185Google Scholar
  115. 115.
    Vanpaemel J, Sugiura M, Barbarin Y, De Gendt S, Tokei Z, Vereecken PM, van der Veen MH (2014) Growth and integration challenges for carbon nanotube interconnects. Microelectron Eng 120:188–193CrossRefGoogle Scholar
  116. 116.
    Dijon J, Fournier A, Szkutnik PD, Okuno H, Jayet C, Fayolle M (2010) Carbon nanotubes for interconnects in future integrated circuits: the challenge of the density. Diamond Relat Mater 19:382–388CrossRefGoogle Scholar
  117. 117.
    Zhong GF, Iwasaki T, Kawarada H (2006) Semi-quantitative study on the fabrication of densely packed and vertically aligned single-walled carbon nanotubes. Carbon 44:2009–2014CrossRefGoogle Scholar
  118. 118.
    Okuno H, Fournier A, Quesnel E, Muffato V, Poche HL, Fayolle M, Dijon J (2010) CNT integration on different materials suitable for VLSI interconnects. Comptes Rendus Physique 11:381–388CrossRefGoogle Scholar
  119. 119.
    Vollebrgt S, Tichelaar FD, Schellevis H, Beenakker CIM, Ishihara R (2014) Carbon nanotube vertical interconnects fabricated at temperatures as low as 350°C. Carbon 71:249–256CrossRefGoogle Scholar
  120. 120.
    Yokoyama D, Iwasaki T, Yoshida T, Kawarada H, Sato S, Hyakushima T, Nihei M, Awano Y (2007) Low temperature grown carbon nanotube interconnects using inner shells by chemical mechanical polishing. Appl Phys Letts 91:263101-1-3Google Scholar
  121. 121.
    Chiodarelli N, Li Y, Cott DJ, Mertens S, Peys N, Heyns M, De Gendt S, Groeseneken G, Vereecken PM (2011) Integration and electrical characterization of carbon nanotube via interconnects. Microelectron Eng 88(5):837–843CrossRefGoogle Scholar
  122. 122.
    Sugime H, Esconjauregui S, Yang J, D’Arsie L, Oliver RA, Bhardwaj S, Cepek C, Robertson J (2013) Low temperature growth of ultra-high mass density carbon nanotube forests on conductive supports. Appl Phys Lett 103:073116-1-5Google Scholar
  123. 123.
    Zhang ZJ, Wei BQ, Ramanath G, Ajayan PM (2000) Substrate-site selective growth of aligned carbon nanotubes. Appl Phys Letts 77(23):3764–3766Google Scholar
  124. 124.
    Cao A, Baskaran R, Frederick MJ, Turner K, Ajayan PM, Ramanath G (2003) Direction-selective and length-tunable in plane growth of carbon nanotubes. Adv Mater 15(13):1105–1109CrossRefGoogle Scholar
  125. 125.
    Kang SJ, Kocabas C, Ozel T, Shim M, Pimparkar N, Alam MA, Rotkin SV, Rogers JA (2007) High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat Nanotechnol 2:230–236CrossRefGoogle Scholar
  126. 126.
    Chiodarelli N, Masahito S, Kashiwagi Y, Li Y, Arstila K, Richard O, Cott DJ, Heyns M, De Gendt S, Groeseneken G, Vereecken PM (2011) Measuring the electrical resistivity and contact resistance of vertical carbon nanotube bundles for application as interconnects. Nanotechnology 22:085302-1-7Google Scholar
  127. 127.
    Chiodarelli N, Fournier A, Okuno H, Dijon J (2013) Carbon nanotubes horizontal interconnects with end-bonded contacts, diameters down to 50 nm and lengths up to 20 μm. Carbon 60:139–145CrossRefGoogle Scholar
  128. 128.
    Yamada T, Saito T, Suzuki M, Wilhite P (2010) Tunneling between carbon nanofiber and gold electrodes. J Appl Phys 107:044304-1-5Google Scholar
  129. 129.
    Chiodarelli N, Fournier A, Dijon J (2013) Impact of the contact’s geometry on the line resistivity of carbon nanotubes bundles for applications as horizontal interconnects. Appl Phys Lett 103(5):053115-1-4Google Scholar
  130. 130.
    Robertson J, Zhong G, Hofmann S, Bayer BC, Esconjauregui CS, Telg H, Thomsen C (2009) Use of carbon nanotubes for VLSI interconnects. Diamond Relat Mater 18:957–962CrossRefGoogle Scholar
  131. 131.
    Vollebregt S, Ishihara R, Derakhshandeh J, van der Cingel J, Schellevis H, Beenakker CIM (2011) Integrating low temperature aligned carbon nanotubes as vertical interconnects in Si technology. In: 2011 11th IEEE international conference on nanotechnology, Portland Marriott, Portland, OR, USA, pp 985–990Google Scholar
  132. 132.
    Robertson J, Zhong G, Esconjauregui S, Zhang C, Hofmann S (2013) Synthesis of carbon nanotubes and graphene for VLSI interconnects. Microelectron Eng 107:210–218CrossRefGoogle Scholar
  133. 133.
    Wang Y, Liu Y, Li X, Cao L, Wei D, Zhang H, Shi D, Yu G, Kajiura H, Li Y (2007) Direct enrichment of metallic Single-walled carbon nanotubes induced by the different molecular composition of monohydroxy alcohol homologues. Small 3(9):1486–1490CrossRefGoogle Scholar
  134. 134.
    Harutyunyan AR, Chen G, Paronyan TM, Pigos EM, Kuznetsov OA, Hewaparakrama K, Kim SM, Zakharov D, Stach EA, Sumanasekera GU (2009) Preferential growth of single-walled carbon nanotubes with metallic conductivity. Science 326:116–120CrossRefGoogle Scholar
  135. 135.
    Yang F, Wang X, Zhang D, Yang J, Luo D, Xu Z, Wei J, Wang JQ, Xu Z, Peng F, Li X, Li R, Li Y, Li M, Bai X, Ding F, Li Y (2014) Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 510:522–524CrossRefGoogle Scholar
  136. 136.
    Zhong G, Xie R, Yang J, Robertson J (2014) Single-step CVD growth of high-density carbon nanotube forests on metallic Ti coatings through catalyst engineering. Carbon 67:680–687CrossRefGoogle Scholar
  137. 137.
    Cantoro M, Hofmann S, Pisana S, Scardaci V, Parvez A, Ducati C, Ferrari AC, Blackburn AM, Wang KY, Robertson J (2006) Catalytic chemical vapor deposition of single-wall carbon nanotubes at low temperatures. Nano Lett 6(6):1107–1112CrossRefGoogle Scholar
  138. 138.
    Nessim GD (2010) Properties synthesis and growth mechanisms of carbon nanotubes with special focus on thermal chemical vapor deposition. Nanoscale 2(8):1306–1323Google Scholar
  139. 139.
    Zhong G, Warner JH, Fouquet M, Robertson AW, Chen B, Robertson J (2012) Growth of ultrahigh density single-walled carbon nanotube forests by improved catalyst design. ACS Nano 6(4):2893–2903CrossRefGoogle Scholar
  140. 140.
    Robertson J, Zhong G, Esconjauregui S, Zhang C, Fouquet M, Hofmann S (2012) Chemical vapor deposition of carbon nanotube forests. Phys Status Solidi B 249(12):2315–2322CrossRefGoogle Scholar
  141. 141.
    Li Y, Kim W, Zhang Y, Rolandi M, Wang D, Dai H (2001) Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. J Phys Chem B 105(46):11424–11431CrossRefGoogle Scholar
  142. 142.
    Awano Y, Sato S, Kondo D, Ohfuti M, Kawabata A, Nihei M, Yokoyama N (2006) Carbon nanotube via interconnect technologies: size-classified catalyst nanoparticles and low-resistance ohmic contact formation. Phys Status Solidi (a) 203(14):3611–3616Google Scholar
  143. 143.
    Romo-Negreira A, Cott DJ, De Gendt S, Maex K, Heyns MM, Vereecken PM (2010) Electrochemical tailoring of catalyst nanoparticles for CNT spatial-dimension control. J Electrochem Soc 157(3):K47–K51CrossRefGoogle Scholar
  144. 144.
    Na N, Kim DY, So YG, Ikuhara Y, Noda S (2015) Simple and engineered process yielding carbon nanotube arrays with 1.2e1013 cm−2 wall density on conductive underlayer at 400°C. Carbon 81:773–781Google Scholar
  145. 145.
    Liu RM, Ting JM, Huang JCA, Liu CP (2002) Growth of carbon nanotubes and nanowires using selected catalysts. Thin Solid Films 420–421:145–150CrossRefGoogle Scholar
  146. 146.
    Seidel R, Duesberg GS, Unger E, Graham AP, Liebau M, Kreupl F (2004) Chemical vapor deposition growth of single-walled carbon nanotubes at 600 °C and a simple growth model. J Phys Chem B 108(6):1888–1893CrossRefGoogle Scholar
  147. 147.
    Chen G, Seki Y, Kimura H, Sakurai S, Yumura M, Hata K, Futaba DN (2014) Diameter control of single-walled carbon nanotube forests from 1.3–3.0 nm by arc plasma deposition. Sci Rep 4:1–7Google Scholar
  148. 148.
    Ting JM, Liao KH (2004) Low-temperature, nonlinear rapid growth of aligned carbon nanotubes. Chem Phys Lett 396:469–472CrossRefGoogle Scholar
  149. 149.
    Zhang C, Yan F, Allen CS, Bayer BC, Hofmann S, Hickey BJ, Cott D, Zhong G, Robertson J (2010) Growth of vertically-aligned carbon nanotube forests on conductive cobalt disilicide support. J Appl Phys 108:024311-1-6Google Scholar
  150. 150.
    Wang Y, Luo Z, Li B, Ho PS, Yao Z, Shi L, Bryan EN, Nemanich RJ (2007) Comparison study of catalyst nanoparticle formation and carbon nanotube growth: support effect. J Appl Phys 101:124310-1-8Google Scholar
  151. 151.
    Esconjauregui S, Bayer BC, Fouquet M, Wirth CT, Yan F, Xie R, Ducati C, Baehtz C, Castellarin-Cudia C, Bhardwaj S, Cepek C, Hofmann S, Robertson J (2011) Use of plasma treatment to grow carbon nanotube forests on TiN substrate. J Appl Phys 109:114312-1-10Google Scholar
  152. 152.
    Olivares J, Mirea T, Diaz-Duran B, Clement M, DeMiguel-Ramos M, Sangrador J, Frutos J, Iborra E (2015) Growth of carbon nanotube forests on metallic thin films. Carbon 90:9–15CrossRefGoogle Scholar
  153. 153.
    Zhang C, Xie R, Chen B, Yang J, Zhong G, Robertson J (2013) High density carbon nanotube growth using a plasma pretreated catalyst. Carbon 53:339–345CrossRefGoogle Scholar
  154. 154.
    Esconjauregui S, Xie R, Fouquet M, Cartwright R, Hardeman D, Yang J, Robertson J (2013) Measurement of area density of vertically aligned carbon nanotube forests by the weight-gain method. J Appl Phys 113:144309-1-7Google Scholar
  155. 155.
    Xie R, Zhang C, Chen B, van der Veen M, Zhong G, Robertson J (2014) Increased carbon nanotube area density after catalyst generation from cobalt disilicide using a cyclic reactive ion etching approach. J Appl Phys 115:144302-1-4Google Scholar
  156. 156.
    Liu TL, Wu HW, Wang CY, Chen SY, Hung MH, Yew TR (2013) A method to form self-aligned carbon nanotube vias using a Ta-cap layer on a Co-catalyst. Carbon 56:366–373CrossRefGoogle Scholar
  157. 157.
    Hermann S, Ecke R, Schulz S, Gessner T (2008) Controlling the formation of nanoparticles for definite growth of carbon nanotubes for interconnect applications. Microelectron Eng 85(10):1979–1983Google Scholar
  158. 158.
    Vitos L, Ruban A, Skriver HL, Kollar J (1998) The surface energy of metals. Surf Sci 411:186–202CrossRefGoogle Scholar
  159. 159.
    Zhang C, Yan F, Bayer BC, Blume R, van der Veen MH, Xie R, Zhong G, Chen B, Knop-Gericke A, Schlog R, Capraro BD, Hofmann S, Robertson J (2012) Complementary metal-oxide-semiconductor-compatible and self-aligned catalyst formation for carbon nanotube synthesis and interconnect fabrication. J Appl Phys 111:064310-1-6Google Scholar
  160. 160.
    Hofmann S, Cantoro M, Kaempgen M, Kang DJ, Golovko VB, Li HW, Yang Z, Geng J, Huck WTS, Jonson BFG, Robertson J (2005) Catalyst patterning methods for surface-bound chemical vapor deposition of carbon nanotubes. Appl Phys A 81:1559–1567CrossRefGoogle Scholar
  161. 161.
    Maschmann MR, Franklin AD, Amama PB, Zakharov DN, Stach EA, Sands TD, Fisher TS (2006) Vertical single-and double-walled carbon nanotubes grown from modified porous anodic alumina templates. Nanotechnology 17:3925–3929Google Scholar
  162. 162.
    Chen Z, Cao G, Lin Z, Koehler I, Bachmann PK (2006) A self-assembled synthesis of carbon nanotubes for interconnects. Nanotechnology 17:1062–1066Google Scholar
  163. 163.
    Koji H, Furuta H, Sekiya K, Nitta N, Harigai T, Hatta A (2013) Increased CNT growth density with an additional thin Ni layer on the Fe/Al catalyst film. Diamond Relat Mater 36:1–7CrossRefGoogle Scholar
  164. 164.
    Xie R, Zhang C, van der Ven MH, Arstila K, Hantschel T, Chen B, Zhong G, Robertson J (2013) Carbon nanotube growth for through silicon via application. Nanotechnology 24:125603-1-7Google Scholar
  165. 165.
    Yamazaki Y, Katagiri M, Sakuma N, Suzuki M, Sato S, Nihei M, Wada M, Matsunaga N, Sakai T, Awano Y (2010) Synthesis of a closely packed carbon nanotube forest by a multi-step growth method using plasma-based chemical vapor deposition. Appl Phys Express 3:055002-1-3Google Scholar
  166. 166.
    Meyyappan M, Delzeit L, Cassell A, Hash D (2003) Carbon nanotube growth by PECVD: areview. Plasma Sources Sci Technol 12:205–216Google Scholar
  167. 167.
    Bower C, Zhu W, Jin S, Zhou O (2000) Plasma-induced alignment of carbon nanotubes. Appl Phys Lett 77(6):830–832CrossRefGoogle Scholar
  168. 168.
    Teo KBK, Hash DB, Lacerda RG, Rupesinghe NL, Bell MS, Dalal SH, Bose D, Govindan TR, Cruden BA, Chhowalla A, Amaratunga GAJ, Meyyappan M, Milne WI (2004) The significance of plasma heating in carbon nanotube and nanofiber growth. Nano Lett 4(5):921–926CrossRefGoogle Scholar
  169. 169.
    Luo Z, Lim S, You Y, Miao J, Gong H, Zhang J, Wang S, Lin J, Shen Z (2008) Effect of ion bombardment on the synthesis of vertically aligned single-walled carbon nanotubes by plasma-enhanced chemical vapor deposition. Nanotechnology 19(25):255607-1-6Google Scholar
  170. 170.
    Zhong GF, Iwasaki T, Honda K, Furukawa Y, Ohdmari I, Kawarada H (2005) Very high yield growth of vertically aligned single-walled carbon nanotubes by point-arc microwave plasma CVD. Chem Vap Deposition 11(3):127–130CrossRefGoogle Scholar
  171. 171.
    Nozaki T, Ohnishi K, Okazaki K, Korshagen U (2007) Fabrication of vertically aligned single-walled carbon nanotubes in atmospheric pressure non-thermal plasma CVD. Carbon 45(2):364–374CrossRefGoogle Scholar
  172. 172.
    Juang ZY, Lai JF, Weng CH, Lee JH, Lai HJ, Lai TS, Tsai CH (2004) On the kinetics of carbon nanotube growth by thermal CVD method. Diamond Relat Mater 13(11-12):2140–2146CrossRefGoogle Scholar
  173. 173.
    Wei S, Kang WP, Davidson JL, Huang JH (2006) Aligned carbon nanotubes fabricated by thermal CVD at atmospheric pressure using Co as catalyst with NH3 as reactive gas. Diamond Relat Mater 15(11-12):1828–1833CrossRefGoogle Scholar
  174. 174.
    Kyung S, Lee Y, Kim C, Lee J, Yeom G (2006) Deposition of carbon nanotubes by capillary-type atmospheric pressure PECVD. Thin Solid Films 506–507:268–273CrossRefGoogle Scholar
  175. 175.
    Park YS, Yi J, Lee J (2013) The characteristics of carbon nanotubes grown at low temperature for electronic device application. Thin Solid Films 546:81–84CrossRefGoogle Scholar
  176. 176.
    Yokoyama D, Iwasaki T, Ishimaru K, Sato S, Nihei M, Awano Y, Kawarada H (2010) Low-temperature synthesis of multiwalled carbon nanotubes by graphite antenna CVD in a hydrogen-free atmosphere. Carbon 48:825–831CrossRefGoogle Scholar
  177. 177.
    Ting JM, Wua WY, Liao KH, Wua HH (2009) Low temperature, non-isothermal growth of carbon nanotubes. Carbon 47:2671–2678CrossRefGoogle Scholar
  178. 178.
    Kreupl F, Graham AP, Duesberg GS, Steinhogl W, Liebau M, Unger E, Honlein W (2002) Carbon nanotubes in interconnect applications. Microelectron Eng 64(1):399–408CrossRefGoogle Scholar
  179. 179.
    Li J, Ye Q, Cassell A, Ng HT, Stevens R, Han J, Meyyappan M (2003) Bottom-up approach for carbon nanotube interconnects. Appl Phys Lett 82(15):2491–2493Google Scholar
  180. 180.
    Pal SK, Talapatra S, Kar S, Ci L, Vajtai R, Borca-Tasciuc T, Schadler LS, Ajayan PM (2008) Time and temperature dependence of multi-walled carbon nanotube growth on Inconel 600. Nanotechnology 19(4):045610-1-5Google Scholar
  181. 181.
    Vollebregt S, Ishihara R, van der Cingel J, Beenakker K (2011) Low-temperature bottom-up integration of carbon nanotubes for vertical interconnects in monolithic 3D integrated circuits. In: 2011 IEEE International 3D Systems Integrated Conference (3DIC), pp 1–4Google Scholar
  182. 182.
    Vollebregt S, Banerjee S, Beenakker K, Ishihara R (2013) Thermal conductivity of low temperature grown vertical carbon nanotube bundles measured using the three-Ω method. Appl Phys Lett 102:191909-1-4Google Scholar
  183. 183.
    Choi YC, Bae DJ, Lee YH, Lee BS, Han IT, Choi WB, Lee NS, Kim JM (2000) Low temperature synthesis of carbon nanotubes by microwave plasma-enhanced chemical vapor deposition. Synth Met 108(2):159–163CrossRefGoogle Scholar
  184. 184.
    Lee CJ, Park J, Huh Y, Lee JY (2001) Temperature effect on the growth of carbon nanotubes using thermal chemical vapor deposition. Chem Phys Lett 343(1–2):33–38CrossRefGoogle Scholar
  185. 185.
    Wirth CT, Zhang C, Zhong G, Hofmann S, Robertson J (2009) Diffusion- and reaction-limited growth of carbon nanotube forests. ACS Nano 3(11):3560–3566CrossRefGoogle Scholar
  186. 186.
    Zhu L, Xu J, Xiao F, Jiang H, Hess DW, Wong CP (2007) The growth of carbon nanotube stacks in the kinetics-controlled regime. Carbon 45(2):344–348CrossRefGoogle Scholar
  187. 187.
    Shang NG, Tan YY, Stolojan V, Papakonstantinou P, Silva SR (2010) High-rate low-temperature growth of vertically aligned carbon nanotubes. Nanotechnology 21(50):505604-1-6Google Scholar
  188. 188.
    Zhang Y, Chang A, Cao J, Wang Q, Kim W, Li Y, Morris N, Yenilmez E, Kong J, Dai H (2000) Electric-field-directed growth of aligned single-walled carbon nanotubes. Appl Phys Letts 79(19):3155–3157Google Scholar
  189. 189.
    Ural A, Li Y, Dai H (2002) Electric-field-aligned growth of single-walled carbon nanotubes on surfaces. Appl Phys Lett 81(18):3464–3466CrossRefGoogle Scholar
  190. 190.
    Lee KH, Cho JM, Sigmunda W (2003) Control of growth orientation for carbon nanotubes. Appl Phys Lett 82(3):448–450CrossRefGoogle Scholar
  191. 191.
    Huang S, Cai X, Liu J (2003) Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. J Am Chem Soc 125:5636–5637CrossRefGoogle Scholar
  192. 192.
    Zhang C, Cott D, Chiodarelli N, Vereecken P, Robertson J, Whelan CM (2008) Growth of carbon nanotubes as horizontal interconnects. Phys Status Sol (b) 245(10):2308–2310CrossRefGoogle Scholar
  193. 193.
    Santini CA, Cott DJ, Romo-Negreira A, Capraro BD, Riva Sanseverino S, De Gendt S, Groeseneken G, Vereecken PM (2010) Growth and characterization of horizontally suspended CNTs across TiN electrode gaps. Nanotechnology 21:245604-1-9Google Scholar
  194. 194.
    Lu J, Miao J, Norford LK (2013) Localized synthesis of horizontally suspended carbon nanotubes. Carbon 57:259–266CrossRefGoogle Scholar
  195. 195.
    Ngo Q, Petranovic D, Krishnan S, Cassell AM, Ye Q, Li J, Meyyappan M, Yang CY (2004) Electron transport through metal-multiwall carbon nanotube interfaces. IEEE Trans Nanotechnol 3(2):311–317CrossRefGoogle Scholar
  196. 196.
    Kanda A, Ootuka Y, Tsukagoshi K, Aoyagi Y (2001) Electron transport in metal/multiwall carbon nanotube/metal structures. Appl Phys Lett 79:1354–1356CrossRefGoogle Scholar
  197. 197.
    Tersoff J (1999) Contact resistance of carbon nanotubes. Appl Phys Lett 74:2122–2124CrossRefGoogle Scholar
  198. 198.
    Matsuda Y, Deng WQ, Goddard WA III (2007) Contact resistance properties between carbon nanotubes and various metals from quantum mechanics. J Phys Chem C 111:11113–11116CrossRefGoogle Scholar
  199. 199.
    Lan C, Zakharov DN, Reifenberger RG (2008) Determing the optimal contact length for a metal/multiwalled carbon nanotube interconnect. Appl Phys Lett 92(21):213112, -1-3CrossRefGoogle Scholar
  200. 200.
    Lee S, Kahng SJ, Kuk Y. Nano-level wettings of platinum and palladium on single-walled carbon nanotubes. Chem Phys Lett 500: 82–85Google Scholar
  201. 201.
    Lim SC, Jang JH, Bae DJ, Han GH, Lee S, Yeo IS, Yeo IS, Lee YH (2009) Contact resistance between metal and carbon nanotube interconnects: effect of work function and wettability. Appl Phys Lett 95(26):264103-1-3CrossRefGoogle Scholar
  202. 202.
    Felten A, Suarez-Martinez I, Ke X, Tendeloo GV, Ghijsen J, Pireaux JJ, Drube W, Bittencourt C, Ewels CP (2009) The role of oxygen at the interface between titanium and carbon nanotubes. Eur J Chem Phys Chem 10(11):1799–1804Google Scholar
  203. 203.
    Anantram MP (2001) Which nanowire couples better electrically to a metal contact: Armchair or zigzag nanotube. Appl Phys Lett 78:2055–2057CrossRefGoogle Scholar
  204. 204.
    Lee S, Lim JS, Baik SJ (2011) Integration of carbon nanotube interconnects for full compatibility with semiconductor technologies. J Electrochem Soc 158(11):K193–K196CrossRefGoogle Scholar
  205. 205.
    Santini CA, Vereecken PM, Volodin A, Groeseneken G, Gendtand, SD, Haesendonck CV (2011) A study of Joule heating-induced breakdown of carbon nanotube interconnects. Nanotechnology 22:395202-1-9Google Scholar
  206. 206.
    Dong LF, Youkey S, Bush J, Jiao J, Dubin VM, Chebiam RV (2007) Effects of local Joule heating on the reduction of contact resistance between carbon nanotubes and metal electrodes. J Appl Phys 101(2):024320-1-7CrossRefGoogle Scholar
  207. 207.
    Ryan PM, Verhulst AS, Cott D, Romo-Negreira A, Hantschel T, Boland JJ (2010) Optimization of multi-walled carbon nanotube-metal contacts by electrical stressing. Nanotechnology 21(4):045705-1-6Google Scholar
  208. 208.
    Woo Y, Duesberg GS, Roth S (2007) Reduced contact resistance between an individual single-walled carbon nanotube and a metal electrode by a local point annealing. Nanotechnology 18(9):095203-1-7Google Scholar
  209. 209.
    Kim S, Kulkarni D, Rykaczewski K, Tsukruk HMV, Fedorov A (2012) Fabrication of an ultra low resistance ohmic contact to MWCNT-metal interconnect using graphitic carbon by electron beam induced deposition. IEEE Trans Nanotechnol 11:1223–1230Google Scholar
  210. 210.
    Rykaczewski K, Henry MR, Kim SK, Fedorov AG, Kulkarni D, Singamaneni S, Tsukruk VV (2010) The effect of the geometry and material properties of a carbon joint produced by electron beam induced deposition on the electrical resistance of a multiwalled carbon nanotube-to-metal contact interface. Nanotechnology 21(3):035202-1-12CrossRefGoogle Scholar
  211. 211.
    Liebau M, Unger E, Duesberg GS, Graham AP, Seidel R, Kreupl F, Hoenlein W (2003) Contact improvement of carbon nanotubes via electroless nickel deposition. Appl Phys A 77:731–734CrossRefGoogle Scholar
  212. 212.
    Seidel R, Liebau M, Duesberg GS, Kreupl F, Unger E, Graham AP, Hoenlein W, Pompe W (2003) In-situ contacted single-walled carbon nanotubes and contact improvement by electroless deposition. Nano Lett 3(7):965–968CrossRefGoogle Scholar
  213. 213.
    Chen C, Yan L, Kong ESW, Zhang Y (2006) Ultrasonic nanowelding of carbon nanotubes to metal electrodes. Nanotechnology 17:2192–2197CrossRefGoogle Scholar
  214. 214.
    Song X, Liu S, Gan Z, Yan H, Ai Y (2009) Contact configuration modification at carbon nanotube-metal interface during nanowelding. J Appl Phys 106:124308-1-4Google Scholar
  215. 215.
    Chen C, Zhang W, Wei L, Su Y, Hu N, Wang Y, Li Y, Zhong H, Liu Y, Liu X, Liu X, Zhang Y (2015) Investigation on nanotube-metal contacts under different contact types. Mater Lett 145:95–98CrossRefGoogle Scholar
  216. 216.
    Santini CA, Volodin A, Haesendonck CV, Gendt SD, Groeseneken G, Vereecken PM (2011) Carbon nanotube-carbon nanotube contacts as an alternative towards low resistance horizontal interconnects. Carbon 49:4004–4012CrossRefGoogle Scholar
  217. 217.
    Fiedler H, Toader M, Hermann S, Rodriguez RD, Sheremet E, Rennau M, Schulze S, Waechtler T, Hietschold M, Zahn DRT, Schulz SE, Gessner T (2014) Carbon nanotube based via interconnects: performance estimation based on the resistance of individual carbon nanotubes. Microelectron Eng 120:210–215CrossRefGoogle Scholar
  218. 218.
    Yaglioglu O, Hart AJ, Martens R, Slocum AH (2006) Method of characterizing electrical contact properties of carbon nanotube coated surfaces. Rev Sci Instrum 77:095105-1-3Google Scholar
  219. 219.
    Kane AA, Sheps T, Branigan ET, Apkarian VA, Cheng MH, Hemminger JC, Hunt SR, Collins PG (2009) Graphitic electrical contacts to metallic single-walled carbon nanotubes using Pt electrodes. Nano Lett 9(10):3586–3591CrossRefGoogle Scholar
  220. 220.
    Lee JO, Park C, Kim JJ, Kim J, Park JW, Yoo KH (2000) Formation of low-resistance ohmic contacts between carbon nanotube and metal electrodes by a rapid thermal annealing method. J Phys D Appl Phys 33(16):1953–1956CrossRefGoogle Scholar
  221. 221.
    Katagiri M, Wada M, Ito B, Yamazaki Y, Suzuki M, Kitamura M, Saito T, Isobayashi A, Sakata A, Sakuma N, Kajita A, Sakai T (2012) Fabrication and characterization of planarized carbon nanotube via interconnects. Jpn J Appl Phys 1:05ED02–05ED04Google Scholar
  222. 222.
    Fiedler H, Toader M, Hermann S, Rennau M, Rodriguez RD, Sheremet E, Hietschold M, Zahn DRT, Schulz SE, Gessner T (2015) Back-end-of-line compatible contact materials for carbon nanotube based interconnects. Microelectron Eng 137:130–134CrossRefGoogle Scholar
  223. 223.
    van der Veen MH, Vereecke B, Huyghebaert C, Cott DJ, Sugiura M, Kashiwagi Y, Teugels L, Caluwaerts R, Chiodarelli N, Vereecken PM, Beyer GP, Heyns MM, DeGendt S, Tökei Z (2013) Electrical characterization of CNT contacts with Cu Damascene top contact. Microelectron Eng 106:106–111CrossRefGoogle Scholar
  224. 224.
    Lee S, Lee BJ (2012) Removal of residual oxide layer formed during chemical–mechanical-planarization process for lowering contact resistance. Surf Coat Technol 206:3142–3145CrossRefGoogle Scholar
  225. 225.
    Jiang D, Wang T, Chen S, Ye L, Liu J (2013) Paper-mediated controlled densification and low temperature transfer of carbon nanotube forests for electronic interconnect application. Microelectron Eng 103:177–180CrossRefGoogle Scholar
  226. 226.
    Sato S, Nihei M, Mimura A, Kawabata A, Kondo D, Shioya H, Iwai T, Mishima M, Ohfuti M, Awano Y (2006) Novel approach to fabricating carbon nanotube via interconnects using size-controlled catalyst nanoparticles. Int Interconnect Technol Conf 2006:230–232Google Scholar
  227. 227.
    Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T (1996) Electrical conductivity of individual carbon nanotubes. Nature 382:54–56CrossRefGoogle Scholar
  228. 228.
    Chen Q, Wang S, Peng LM (2006) Establishing Ohmic contacts for in situ current–voltage characteristic measurements on a carbon nanotube inside the scanning electron microscope. Nanotechnology 17:1087–1098CrossRefGoogle Scholar
  229. 229.
    Dai H, Wong EW, Lieber CM (1996) Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science 272:523–526CrossRefGoogle Scholar
  230. 230.
    Li Y, Mann D, Rolandi M, Kim W, Ural A, Hung S, Javey A, Cao J, Wang D, Yenilmez E, Wang Q, Gibbons JF, Nishi Y, Dai H (2004) Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method. Nano Lett 4(2):317–321CrossRefGoogle Scholar
  231. 231.
    Qu L, Du F, Dai L (2008) Preferential syntheses of semiconducting vertically aligned single-walled carbon nanotubes for direct use in FETs. Nano Lett 8(9):2682–2687CrossRefGoogle Scholar
  232. 232.
    Reich S, Li L, Robertson J (2006) Control the chirality of carbon nanotubes by epitaxial growth. Chem Phys Lett 421:469–472CrossRefGoogle Scholar
  233. 233.
    Ghorannevis Z, Kato T, Kaneko T, Hatakeyama R (2010) Narrow-chirality distributed single-walled carbon nanotube growth from nonmagnetic catalyst. J Am Chem Soc 132:9570–9572CrossRefGoogle Scholar
  234. 234.
    Chiang WH, Sankaran RM (2009) Linking catalyst composition to chirality distributions of as-grown single-walled carbon nanotubes by tuning NixFe1-x nanoparticles. Nat Mater 8:882–886CrossRefGoogle Scholar
  235. 235.
    Fouquet M, Bayer BC, Esconjauregui S, Blume R, Warner JH, Hofmann S, Schlogl R, Thomsen C, Robertson J (2012) Highly chiral-selective growth of single-walled carbon nanotubes with a simple monometallic Co catalyst. Phys Rev B 85:235411-1-7Google Scholar
  236. 236.
    Fouquet M, Bayer BC, Esconjauregui S, Thomsen C, Hofmann S, Robertson J (2014) Effect of catalyst pretreatment on chirality-selective growth of single-walled carbon nanotubes. J Phys Chem C 118:5773–5781CrossRefGoogle Scholar
  237. 237.
    Liu B, Ren W, Li S, Liu C, Cheng HM (2010) High temperature selective growth of single-walled carbon nanotubes with a narrow chirality distribution from a CoPt bimetallic catalyst. Chem Commun 48:2409–2411CrossRefGoogle Scholar
  238. 238.
    Lau JH (2001) Evolution, challenge, and outlook of TSV, 3D IC integration and 3D silicon integration. In: 2011 International Symposium on Advanced Packaging Materials (APM), IEEE, pp 462–488Google Scholar
  239. 239.
    Tsai TC, Tsao WC, Lin W, Hsu CL, Hsu CM, Lin JF, Huang CC, Wu JY (2012) CMP process development for the via-middle 3D applications at 28 nm technology node. Microelectron Eng 92:29–33CrossRefGoogle Scholar
  240. 240.
    Zhang R, Roy K, Koh CK, Janes DB (2001) Power trends and performance characterization of 3-dimensional integration for future technology generations. In: Quality electronic design, international symposium on IEEE computer society, pp 217–222Google Scholar
  241. 241.
    Du L, Shi T, Chen P, Su L, Shen J, Shao J, Liao G (2015) Optimization of through silicon via for three-dimensional integration. Microelectron Eng 139:31–38CrossRefGoogle Scholar
  242. 242.
    Bayat P, Vogel D, Rodriguez RD, Sheremet E, Zahn DRT, Rzepka S, Michel B (2015) Thermo-mechanical characterization of copper through-silicon vias (Cu-TSVs) using micro-Raman spectroscopy and atomic force microscopy. Microelectron Eng 137:101–104CrossRefGoogle Scholar
  243. 243.
    Koseski RP, Osborn WA, Stranick SJ, DelRio FW, Vaudin MD, Dao T, Adams VH, Cook RF (2011) Micro-scale measurement and modeling of stress in silicon surrounding a tungsten-filled through-silicon via. J Appl Phys 110:073517-1-10Google Scholar
  244. 244.
    Krauss C, Labat S, Escoubas S, Thomas O, Carniello S, Teva J, Schrank F (2013) Stress measurements in tungsten coated through silicon vias for 3D integration. Thin Solid Films 530:91–95CrossRefGoogle Scholar
  245. 245.
    Le Texier F, Mazuir J, Su M, Castagne L, Souriau JC, Liotard JL, Saadaoui M, Inal K (2013) Effect of TSV density on local stress concentration: micro-Raman spectroscopy measurement and finite element analysis. Microelectron Eng 106:139–143Google Scholar
  246. 246.
    Ryu SK, Lu KH, Jiang T, Im JH, Huang R, Ho PS (2012) Effect of thermal stresses on carrier mobility and keep-out zone around through-silicon vias for 3-D integration. IEEE Trans Device Mater Reliab 12(2):255–262CrossRefGoogle Scholar
  247. 247.
    Cheng EJ, Shen YL (2012) Thermal expansion behavior of through-silicon-via structures in three-dimensional microelectronic packaging. Microelectron Reliab 52(3):534–540CrossRefGoogle Scholar
  248. 248.
    Ryu SK, Lu KH, Zhang X, Im JH, Ho PS, Huang R (2011) Impact of near-surface thermal stresses on interfacial reliability of through-silicon vias for 3-D interconnects. IEEE Trans Device Mater Reliab 11(1):35–43CrossRefGoogle Scholar
  249. 249.
    Lu KH, Ryu SK, Qiu Z, Zhang X, Im J, Huang R, Ho PS (2010) Thermal stress induced delamination of through silicon vias in 3-D interconnects. In: Electronic components and technology conference (ECTC), 2010 proceedings of the 60th electronic components and technology conference, pp 40–45Google Scholar
  250. 250.
    Ryu SK, Jiang T, Im J, Ho PS, Huang R (2014) Thermomechanical failure analysis of through-silicon via interface using a shear-lag model with cohesive zone. IEEE Trans Device Mater Reliab 14(1):318–326CrossRefGoogle Scholar
  251. 251.
    Liu X, Chen Q, Sundaram V, Tummala RR, Sitaraman SK (2013) Failure analysis of through-silicon vias in free-standing wafer under thermal-shock test. Microelectron Reliab 53(1):70–78CrossRefGoogle Scholar
  252. 252.
    Kamto A, Liu Y, Schaper L, Burkett SL (2009) Reliability study of through-silicon via (TSV) copper filled interconnects. Thin Solid Films 518:1614–1619CrossRefGoogle Scholar
  253. 253.
    Zhu L, Xu J, Xiu Y, Sun Y, Hess DW, Wong CP (2006) Growth and electrical characterization of high aspect ratio carbon nanotube arrays. Carbon 44(2):253–258CrossRefGoogle Scholar
  254. 254.
    Xu T, Wang Z, Miao J, Chen X, Tan CM (2007) Aligned carbon nanotubes for through-wafer interconnects. Appl Phys Letts 91:042108-1-3Google Scholar
  255. 255.
    Wang T, Jeppson K, Olofsson N, Campbell EEB, Liu J (2009) Through silicon vias filled with planarized carbon nanotube bundles. Nanotechnology 20:485203-1-6Google Scholar
  256. 256.
    Xie R, Zhang C, van der Veen MH, Arstila K, Hantschel T, Chen B, Zhong G, Robertson J (2013) Carbon nanotube growth for through silicon via application. Nanotechnology 24:125603-1-7Google Scholar
  257. 257.
    Wang T, Chen S, Jiang D, Fu Y, Jeppson K, Ye L, Liu J (2012) Through-silicon vias filled with densified and transferred carbon nanotube forests. IEEE Electron Device Lett 33(3):420–422CrossRefGoogle Scholar
  258. 258.
    Jiang D, Mu W, Chen S, Fu Y, Jeppson K, Liu J (2015) Vertically stacked carbon nanotube-based interconnects for through silicon via application. IEEE Electron Device Lett 36(5):499–501CrossRefGoogle Scholar
  259. 259.
    Mu W, Sun S, Jiang D, Fu Y, Edwards M, Zhang Y, Jeppson K, Liu J (2015) Tape-assisted transfer of carbon nanotube bundles for through-silicon-via applications. J Electron Mater 44(8):2898–2907CrossRefGoogle Scholar
  260. 260.
    Zhao WS, Yin WY, Guo YX (2012) Electromagnetic compatibility-oriented study on through silicon single-walled carbon nanotube bundle via (TS-SWCNTBV) arrays. IEEE Trans Electromagn Compat 54(1):149–157CrossRefGoogle Scholar
  261. 261.
    Zhao WS, Sun L, Yin WY, Guo YX (2014) Electrothermal modelling and characterisation of submicron through-silicon carbon nanotube bundle vias for three-dimensional ICs. Micro Nano Lett 9(2):123–126CrossRefGoogle Scholar
  262. 262.
    Qian L, Zhu Z, Xia Y (2014) Study on transmission characteristics of carbon nanotube through silicon via interconnect. IEEE Microw Wirel Compon Lett 24(12):830–832CrossRefGoogle Scholar
  263. 263.
    Qian L, Xia Y, Liang G (2015) Study on crosstalk characteristic of carbon nanotube through silicon vias for three dimensional integration. Microelectron J 46(7):572–580CrossRefGoogle Scholar
  264. 264.
    Majumder MK, Kumari A, Kaushik BK, Manhas SK (2014) Signal integrity analysis in carbon nanotube based through-silicon via. Active & Passive Electronic Components. Hindawi Publishing Corporation, Cario, 524107-1-7Google Scholar
  265. 265.
    Neto AC, Guinea F, Peres N, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109CrossRefGoogle Scholar
  266. 266.
    Srivastava A, Manulanda JM, Xu Y, Sharma AK (2015) Carbon-based electronics: transistors and interconnects at the nanoscale. Pan Stanford Publishing, SingaporeCrossRefGoogle Scholar
  267. 267.
    Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710CrossRefGoogle Scholar
  268. 268.
    Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2008) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30–35CrossRefGoogle Scholar
  269. 269.
    Brodie BC (1859) On the atomic weight of graphite. Philos Trans R Soc Lond 249–259Google Scholar
  270. 270.
    An X, Simmons T, Shah R, Wolfe C, Lewis KM, Washington M, Nayak SK, Talapatra S, Kar S (2010) Stable aqueous dispersions of noncovalently functionalized graphene from graphite and their multifunctional high-performance applications. Nano Lett 10:4295–4301CrossRefGoogle Scholar
  271. 271.
    Berger C, Song Z, Li T, Li X, Ogbazghi AY, Feng R, Dai Z, Marchenkov AN, Conrad EH, First PN, de Heer WA (2004) Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B 108:19912–19916Google Scholar
  272. 272.
    Bolotin K, Sikes K, Hone J, Stormer H, Kim P (2008) Temperature-dependent transport in suspended graphene. Phys Rev Lett 101:096802CrossRefGoogle Scholar
  273. 273.
    Du X, Skachko I, Barker A, Andrei EY (2008) Approaching ballistic transport in suspended graphene. Nat Nanotechnol 3:491–495CrossRefGoogle Scholar
  274. 274.
    Chen J-H, Jang C, Adam S, Fuhrer M, Williams E, Ishigami M (2008) Charged-impurity scattering in graphene. Nat Phys 4:377–381CrossRefGoogle Scholar
  275. 275.
    Chen J-H, Jang C, Xiao S, Ishigami M, Fuhrer MS (2008) Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol 3:206–209CrossRefGoogle Scholar
  276. 276.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRefGoogle Scholar
  277. 277.
    Suemitsu M, Miyamoto Y, Handa H, Konno A (2009) Graphene formation on a 3C-SiC (111) thin film grown on Si (110) substrate. Electron J Surf Sci Nanotechnol 7:311–313CrossRefGoogle Scholar
  278. 278.
    Gamo Y, Nagashima A, Wakabayashi M, Terai M, Oshima C (1997) Atomic structure of monolayer graphite formed on Ni (111). Surf Sci 374:61–64CrossRefGoogle Scholar
  279. 279.
    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314CrossRefGoogle Scholar
  280. 280.
    Gómez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M, Kern K (2007) Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett 7:3499–3503CrossRefGoogle Scholar
  281. 281.
    Misawa T, Okanaga T, Mohamad A, Sakai T, Awano Y (2015) Line width dependence of transport properties in graphene nanoribbon interconnects with real space edge roughness determined by Monte Carlo method. Jpn J Appl Phys 54:05EB01Google Scholar
  282. 282.
    Lin W, Moon K-S, Zhang S, Ding Y, Shang J, Chen M, Wong C (2010) Microwave makes carbon nanotubes less defective. ACS Nano 4:1716–1722CrossRefGoogle Scholar
  283. 283.
    Ouyang Y, Wang X, Dai H, Guo J (2008) Carrier scattering in graphene nanoribbon field-effect transistors. Appl Phys Lett 92:243124CrossRefGoogle Scholar
  284. 284.
    Yang Y, Murali R (2010) Impact of size effect on graphene nanoribbon transport. IEEE Electron Device Lett 31:237–239CrossRefGoogle Scholar
  285. 285.
    Murali R, Brenner K, Yang Y, Beck T, Meindl JD (2009) Resistivity of graphene nanoribbon interconnects. IEEE Electron Device Lett 30:611–613CrossRefGoogle Scholar
  286. 286.
    Yu Q, Lian J, Siriponglert S, Li H, Chen YP, Pei S-S (2008) Graphene segregated on Ni surfaces and transferred to insulators. Appl Phys Lett 93:113103CrossRefGoogle Scholar
  287. 287.
    Wang X, Dai H (2010) Etching and narrowing of graphene from the edges. Nat Chem 2: 661–665CrossRefGoogle Scholar
  288. 288.
    Li X, Wang X, Zhang L, Lee S, Dai H (2008) Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319:1229–1232CrossRefGoogle Scholar
  289. 289.
    Jiao L, Wang X, Diankov G, Wang H, Dai H (2010) Facile synthesis of high-quality graphene nanoribbons. Nat Nanotechnol 5:321–325CrossRefGoogle Scholar
  290. 290.
    Kim K, Sussman A, Zettl A (2010) Graphene nanoribbons obtained by electrically unwrapping carbon nanotubes. ACS Nano 4:1362–1366CrossRefGoogle Scholar
  291. 291.
    Xie L, Wang H, Jin C, Wang X, Jiao L, Suenaga K, Dai H (2011) Graphene nanoribbons from unzipped carbon nanotubes: atomic structures, Raman spectroscopy, and electrical properties. J Am Chem Soc 133:10394–10397CrossRefGoogle Scholar
  292. 292.
    Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen AP, Saleh M, Feng X, Mullen K, Fasel R (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466:470–473CrossRefGoogle Scholar
  293. 293.
    Hicks J, Tejeda A, Taleb-Ibrahimi A, Nevius M, Wang F, Shepperd K, Palmer J, Bertran F, Le Fevre P, Kunc J, de Heer WA, Conrad EH (2013) A wide-bandgap metal–semiconductor-metal nanostructure made entirely from graphene. Nat Phys 9:49–54CrossRefGoogle Scholar
  294. 294.
    Sprinkle M, Ruan M, Hu Y, Hankinson J, Rubio-Roy M, Zhang B, Wu X, Berger C, de Heer WA (2010) Scalable templated growth of graphene nanoribbons on SiC. Nat Nanotechnol 5:727–731CrossRefGoogle Scholar
  295. 295.
    Baringhaus J, Ruan M, Edler F, Tejeda A, Sicot M, Taleb-Ibrahimi A, Li AP, Jiang Z, Conrad EH, Berger C, Tegenkamp C, de Heer WA (2014) Exceptional ballistic transport in epitaxial graphene nanoribbons. Nature 506:349–354CrossRefGoogle Scholar
  296. 296.
    Yu T, Kim E, Jain N, Xu Y, Geer R, Yu B (2011) Carbon-based interconnect: performance, scaling and reliability of 3D stacked multilayer graphene system. In: 2011 IEEE international electron devices meeting (IEDM), pp 751–754Google Scholar
  297. 297.
    Faugeras C, Nerrière A, Potemski M, Mahmood A, Dujardin E, Berger C, de Heer WA (2008) Few-layer graphene on SiC, pyrolytic graphite, and graphene: a Raman scattering study. Appl Phys Lett 92:011914CrossRefGoogle Scholar
  298. 298.
    Yuan Q, Xu Z, Yakobson BI, Ding F (2012) Efficient defect healing in catalytic carbon nanotube growth. Phys Rev Lett 108:245505CrossRefGoogle Scholar
  299. 299.
    Soldano C, Mahmood A, Dujardin E (2010) Production, properties and potential of graphene. Carbon 48:2127–2150CrossRefGoogle Scholar
  300. 300.
    Cervantes-Sodi F, Csanyi G, Piscanec S, Ferrari A (2008) Edge-functionalized and substitutionally doped graphene nanoribbons: electronic and spin properties. Phys Rev B 77:165427CrossRefGoogle Scholar
  301. 301.
    Advanced Industrial Science and Technology (AIST) (2013) Development of Technology for Producing Micro-scale Interconnect from Multi-layer Graphene. http://www.aist.go.jp/
  302. 302.
    Kondo D, Nakanoa H, Zhou B, Kubota I, Hayashia K, Yagi K (2013) Fabrication and evaluation of 20-nm-wide intercalated multi-layer graphene interconnects and 3D interconnects composed of graphene and vertically aligned CNTs. In: International semiconductor device research symposium (ISDRS), pp 11–13Google Scholar
  303. 303.
    Kondo D, Nakano H, Zhou B, Kubota I, Hayashi K, Yagi K, Takahashi M, Sato M, Sato S, Yokoyama N (2013) Intercalated multi-layer graphene grown by CVD for LSI interconnects. In: 2013 IEEE international interconnect technology conference (IITC), pp 1–3Google Scholar
  304. 304.
    Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9:1752–1758CrossRefGoogle Scholar
  305. 305.
    Schedin F, Geim A, Morozov S, Hill E, Blake P, Katsnelson M, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Nater 6:652–655CrossRefGoogle Scholar
  306. 306.
    Gunlycke D, Lawler H, White C (2007) Room-temperature ballistic transport in narrow graphene strips. Phys Rev B 75:085418CrossRefGoogle Scholar
  307. 307.
    Wang H, Wu Y, Ni Z, Shen Z (2008) Electronic transport and layer engineering in multilayer graphene structures. Appl Phys Lett 92: 053504-053504-3Google Scholar
  308. 308.
    Lee EJ, Balasubramanian K, Weitz RT, Burghard M, Kern K (2008) Contact and edge effects in graphene devices. Nat Nanotechnol 3:486–490CrossRefGoogle Scholar
  309. 309.
    Murali R, Yang Y, Brenner K, Beck T, Meindl JD (2009) Breakdown current density of graphene nanoribbons. Appl Phys Lett 94:243114CrossRefGoogle Scholar
  310. 310.
    Cresti A, Nemec N, Biel B, Niebler G, Triozon F, Cuniberti G, Roche S (2008) Charge transport in disordered graphene-based low dimensional materials. Nano Res 1:361–394CrossRefGoogle Scholar
  311. 311.
    Li W, Sevinçli H, Cuniberti G, Roche S (2010) Phonon transport in large scale carbon-based disordered materials: implementation of an efficient order-N and real-space Kubo methodology. Phys Rev B 82:041410CrossRefGoogle Scholar
  312. 312.
    Pop E (2010) Energy dissipation and transport in nanoscale devices. Nano Res 3:147–169CrossRefGoogle Scholar
  313. 313.
    Liao A, Alizadegan R, Ong Z-Y, Dutta S, Xiong F, Hsia KJ, Pop E (2010) Thermal dissipation and variability in electrical breakdown of carbon nanotube devices. Phys Rev B 82:205406CrossRefGoogle Scholar
  314. 314.
    Mohsin KM, Srivastava A, Sharma AK, Mayberry C (2013) A thermal model for carbon nanotube interconnects. Nanomaterials 3:229–241CrossRefGoogle Scholar
  315. 315.
    Mohsin KM, Banadaki YM, Srivastava A (2014) Metallic single-walled, carbon nanotube temperature sensor with self heating. In: Proceedings of SPIE 9060, nanosensors, biosensors, and info-tech sensors and systems, pp 906003-1-7Google Scholar
  316. 316.
    Liao AD, Wu JZ, Wang X, Tahy K, Jena D, Dai H, Pop E (2011) Thermally limited current carrying ability of graphene nanoribbons. Phys Rev Lett 106:256801CrossRefGoogle Scholar
  317. 317.
    Hale P, Hornett S, Moger J, Horsell D, Hendry E (2011) Hot phonon decay in supported and suspended exfoliated graphene. Phys Rev B 83:121404CrossRefGoogle Scholar
  318. 318.
    Han MY, Brant JC, Kim P (2010) Electron transport in disordered graphene nanoribbons. Phys Rev Lett 104:056801CrossRefGoogle Scholar
  319. 319.
    Wang P-C, Filippi R (2001) Electromigration threshold in copper interconnects. Appl Phys Lett 78:3598–3600CrossRefGoogle Scholar
  320. 320.
    Chen X, Seo DH, Seo S, Chung H, Wong H-S (2012) Graphene interconnect lifetime: a reliability analysis. IEEE Electron Device Lett 33:1604–1606CrossRefGoogle Scholar
  321. 321.
    Haji Nasiri S, Moravvej-Farshi MK, Faez R (2010) Stability analysis in graphene nanoribbon interconnects. IEEE Electron Device Lett 31:1458–1460CrossRefGoogle Scholar
  322. 322.
    Das D, Rahaman H (2011) Crosstalk and gate oxide reliability analysis in graphene nanoribbon interconnects. In: 2011 international symposium on electronic system design (ISED), pp 182–187Google Scholar
  323. 323.
    Yu T, Lee E-K, Briggs B, Nagabhirava B, Yu B (2010) Reliability study of bilayer graphene-material for future transistor and interconnect. In: 2010 IEEE international reliability physics symposium (IRPS), pp 80–83Google Scholar
  324. 324.
    Van Noorden R (2006) Moving towards a graphene world. Nature 442:228–229CrossRefGoogle Scholar
  325. 325.
    Kang J, Sarkar D, Khatami Y, Banerjee K (2013) Proposal for all-graphene monolithic logic circuits. Appl Phys Lett 103:083113CrossRefGoogle Scholar
  326. 326.
    Yan T, Ma Q, Chilstedt S, Wong MD, Chen D (2013) A routing algorithm for graphene nanoribbon circuit. ACM Trans Des Autom Electron Syst 18:61CrossRefGoogle Scholar
  327. 327.
    Srivastava A, Banadaki YM, Fahad MS (2014) (Invited) Dielectrics for graphene transistors for emerging integrated circuits. ECS Transactions 61:351–361Google Scholar
  328. 328.
    Banadaki YM, Srivastava A (2013) A novel graphene nanoribbon field effect transistor for integrated circuit design. In: IEEE 56th international midwest symposium on circuits and systems (MWSCAS), pp 924–927Google Scholar
  329. 329.
    Johari Z, Hamid F, Tan MLP, Ahmadi MT, Harun F, Ismail R (2013) Graphene nanoribbon field effect transistor logic gates performance projection. J Comput Theor Nanosci 10(5):1164–1170CrossRefGoogle Scholar
  330. 330.
    Wang X, Sun G, Chen P (2014) Three-dimensional porous architectures of carbon nanotubes and graphene sheets for energy applications. Front Energy Res 2:33Google Scholar
  331. 331.
    Kondo D, Sato S, Awano Y (2008) Self-organization of novel carbon composite structure: graphene multi-layers combined perpendicularly with aligned carbon nanotubes. Appl Phys Express 1:074003CrossRefGoogle Scholar
  332. 332.
    Dimitrakakis GK, Tylianakis E, Froudakis GE (2008) Pillared graphene: a new 3-D network nanostructure for enhanced hydrogen storage. Nano Lett 8:3166–3170CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Division of Electrical and Computer EngineeringLouisiana State UniversityBaton RougeUSA
  2. 2.School of Physics, Liaoning UniversityLiaoningChina
  3. 3.College of Engineering Southern UniversityBaton RougeUSA

Personalised recommendations