Skip to main content

Shock Response of an Antenna Structure Considering Geometric Nonlinearity

  • Conference paper
  • First Online:
Nonlinear Dynamics, Volume 1

Abstract

Antenna structures used in electronic warfare, radar, naval, satellite, spacecraft systems encounter mechanical shock from various sources such as near miss under water explosion, pyrotechnic and ballistic shocks. Since most of the antenna structure has larger dimension in longitudinal direction and experience high frequency, high amplitude shock energy, geometric nonlinearity become crucial to predict dynamic behavior in real life. In this study, the antenna structure is modeled by Euler-Bernoulli beam theory including geometrical nonlinearity. The resulting partial differential equations of motion are converted into a set of nonlinear ordinary differential equations by using Galerkin’s Method, which are solved by Newmark. The results for the linear system obtained from time integration and approximate methods such as Absolute Method, Naval Research Method, and Shock Response Spectrum Method (SRS) are compared to the nonlinear ones. Moreover, these results are compared with the ones obtained from commercial Finite Element software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Internet Live Stats: Number of Internet Users (2014) - Internet Live Stats, 2014. [Online]. Available: http://www.internetlivestats.com/internet-users/. Accessed 01 Jun 2015

  2. Wikipedia, F.: List of countries by number of mobile phones in use. Notes, 2011. [Online]. Available: https://en.wikipedia.org/wiki/List_of_countries_by_number_of_mobile_phones_in_use. Accessed 01 Jun 2015

  3. Poisel, R.A.: Antenna Systems and Electronic Warfare Applications. Artech House, Norwood (2012)

    Google Scholar 

  4. Huang Y., Boyle, K.: Antennas: From Theory to Practice, First Edit. John Willey and Sons Ltd (2008)

    Google Scholar 

  5. Alexander, J.E.: Shock response spectrum – a primer. Sound Vib. (June), 6–14 (2009)

    Google Scholar 

  6. Lalanne, C.: Mechanical Shock: Mechanical Vibration and Shock Analysis, vol. 2. John Willey and Sons Ltd (2009)

    Google Scholar 

  7. Department of Defense Test Method Standard Environmental Engineering Considerations and Laboratory Tests, 2008

    Google Scholar 

  8. Eriksson, J., Kropp, W.: Measuring and Analysis of Pyrotechnic Shock. Chalmers University of Technology (1999)

    Google Scholar 

  9. Reddy, M.C.S., Hussain, J.: Structural analysis of dipoloop antenna radome for airborne applications. Int. J. Eng. Res. Technol. 4(03), 724–735 (2015)

    Google Scholar 

  10. Lopatin, A.V., Morozov, E.V.: Modal analysis of the thin-walled composite spoke of an umbrella-type deployable space antenna. Compos. Struct. 88(1), 46–55 (2009)

    Article  Google Scholar 

  11. Su, H.: Structural Analysis of Ka-Band gimbaled antennas. COM DEV Ltd, Ontario, p. 15

    Google Scholar 

  12. Sreekantamurthy, T., Mann, T., Behun, V., Pearson, J.C., Scarborough, S., Engineer, A., Aerospace, S.: Nonlinear structural analysis methodology and dynamics scaling of inflatable parabolic reflector antenna concepts. Am. Inst. Aeronaut. Astronaut. (April), 1–15 (2007)

    Google Scholar 

  13. Younis, M.I., Alsaleem, F.M., Miles, R., Su, Q.: Characterization of the performance of capacitive switches activated by mechanical shock. J. Micromech. Microeng. 17(7), 1360–1370 (2007)

    Article  Google Scholar 

  14. Li, G.X., Shemansky, F.a.: Drop test and analysis on micro-machined structures. Sens. Actuators, A Phys. 85(1), 280–286 (2000)

    Google Scholar 

  15. Younis, M.I., Miles, R., Jordy, D.: Investigation of the response of microstructures under the combined effect of mechanical shock and electrostatic forces. J. Micromech. Microeng. 16(11), 2463–2474 (2006)

    Article  Google Scholar 

  16. Younis, M.I., Arafat, H.N.: Investigation of the effect of nonlinearities on the response of cantilever microbeams under mechanical shock and electrostatic loading. Soc. Exp. Mech., 5–10 (2008)

    Google Scholar 

  17. Younis, M.I., Alsaleem, F., Jordy, D.: The response of clamped-clamped microbeams under mechanical shock. Int. J. Non-Linear Mech. 42(4), 643–657 (2007)

    Article  Google Scholar 

  18. Liang, C., Yang, M., Tai, Y.: Prediction of shock response for a quadrupod-mast using response spectrum analysis method. Ocean Eng. 29(8), 887–914 (2002)

    Article  Google Scholar 

  19. Alexander, J.E.: Nonlinear system mode superposition given a prescribed shock response spectrum input. In: Proc. Int. Modal Anal. Conf. - IMAC, no. 3, pp. 346–355 (2002)

    Google Scholar 

  20. Younis, M.I., Jordy, D., Pitarresi, J.M.: Computationally efficient approaches to simulate the dynamics of microbeams under mechanical shock. In: IMECE 2006 2006 ASME Int. Mech. Eng. Conf. Expo., vol. 16, no. 3, pp. 628–638 (2006)

    Google Scholar 

  21. Erturk, A., Inman, D.J.: On mechanical modeling of cantilevered piezoelectric vibration energy harvesters. J. Intell. Mater. Syst. Struct. 19(11), 1311–1325 (2008)

    Article  Google Scholar 

  22. Thomson, W.T., Dahleh, M.D.: Theory of Vibration and Applications, Fifth Edit. Pearson Education (1998)

    Google Scholar 

  23. Irvine, T.: Bending frequencies of beams, rods, and pipes. Available on the web on site: http://www.vibrationdata.com, pp. 1–61 (2012)

  24. Majkut, L.: Free and forced vibrations of Timoshenko beams described by single difference equation. J. Theor. Appl. Mech. 47(1), 193–210 (2009)

    Google Scholar 

  25. Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics. Springer (2011)

    Google Scholar 

  26. Yee, J.K., Yang, H.H., Judy, J.W.: Shock resistance of ferromagnetic micromechanical magnetometers. Sens. Actuators, A Phys. 103(1–2), 242–252 (2003)

    Article  Google Scholar 

  27. Gatti, P.L., Ferrari, V.: Applied Structural and Mechanical Vibrations, First Edit. Taylor & Francis Group (1999)

    Google Scholar 

  28. ANSYS 15 Help Viewer, 2014

    Google Scholar 

  29. Abed, E.H., Lindsay, D., Hashlamoun, W.a.: Technical report on participation factors for linear systems. Automatica 36(10), 1489–1496 (1999)

    Google Scholar 

  30. Irvine, T.: Effective modal mass and modal participation factors. Vibrationdata (1), 1–36 (2013)

    Google Scholar 

  31. International Standard-IEC 60068-2-27. Basic Safety Publication, p. 80 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ender Cigeroglu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Ozcelik, Y.E., Cigeroglu, E., Caliskan, M. (2016). Shock Response of an Antenna Structure Considering Geometric Nonlinearity. In: Kerschen, G. (eds) Nonlinear Dynamics, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-29739-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29739-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29738-5

  • Online ISBN: 978-3-319-29739-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics