Skip to main content

Enforcing Linear Dynamics Through the Addition of Nonlinearity

  • Conference paper
  • First Online:
Nonlinear Dynamics, Volume 1

Abstract

The current trend of developing more slender structures is increasing the importance of nonlinearities in engineering design, which, in turn, gives rise to complicated dynamical phenomena. In this study, we evidence the somewhat paradoxical result that adding purposefully nonlinearity to an already nonlinear structure renders the behavior more linear.

Isochronicity, i.e., the invariance of natural frequencies with respect to oscillation amplitude, and the force-displacement proportionality are two key properties of linear systems that are lost for nonlinear systems. The objective of this research is to investigate how these properties can be enforced in a nonlinear system through the addition of nonlinearity. To this end, we exploit the nonlinear normal modes theory to derive simple rules, yet applicable to real structures, for the compensation of nonlinear effects. The developments are illustrated using numerical experiments on a cantilever beam possessing a geometrically nonlinear boundary condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hartog, J.D.: Mechanical Vibrations. Courier Corporation, Chelmsford (1985)

    MATH  Google Scholar 

  2. Ono, T., Li, X., Miyashita, H., Esashi, M.: Mass sensing of adsorbed molecules in sub-picogram sample with ultrathin silicon resonator. Rev. Sci. Instrum. 74(3), 1240–1243 (2003)

    Article  Google Scholar 

  3. Piazza, G., Stephanou, P.J., Pisano, A.P.: Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators. J. Microelectromech. Syst. 15(6), 1406–1418 (2006)

    Article  Google Scholar 

  4. Rega, G., Settimi, V.: Bifurcation, response scenarios and dynamic integrity in a single-mode model of noncontact atomic force microscopy. Nonlinear Dyn. 73(1–2), 101–123 (2013)

    Article  MathSciNet  Google Scholar 

  5. Kacem, N., Hentz, S.: Bifurcation topology tuning of a mixed behavior in nonlinear micromechanical resonators. Appl. Phys. Lett. 95(18), 183104 (2009)

    Article  Google Scholar 

  6. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, vol. 42. Springer Science & Business Media, New York (1983)

    Book  MATH  Google Scholar 

  7. Mittal, S., Menq, C.-H.: Precision motion control of a magnetic suspension actuator using a robust nonlinear compensation scheme. IEEE/ASME Trans. Mechatron. 2(4), 268–280 (1997)

    Article  Google Scholar 

  8. Charlet, B., Lévine, J., Marino, R.: On dynamic feedback linearization. Syst. Control Lett. 13(2), 143–151 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Vakakis, A.F., Gendelman, O., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems, vol. 156. Springer, Berlin (2008)

    MATH  Google Scholar 

  10. Hill, T., Cammarano, A., Neild, S., Wagg, D.: An analytical method for the optimisation of weakly nonlinear systems. In: Proceedings of Eurodyn 2014, pp. 1981–1988 (2014)

    MATH  Google Scholar 

  11. Kuether, R., Renson, L., Detroux, T., Grappasonni, C., Kerschen, G., Allen, M.: Nonlinear normal modes, modal interactions and isolated resonance curves. J. Sound Vib. (2015)

    Google Scholar 

  12. Grappasonni, C., Habib, G., Detroux, T., Kerschen, G.: Experimental demonstration of a 3d-printed nonlinear tuned vibration absorber. In: XXXIII IMAC Conference & Exposition On Structural Dynamics (2015)

    Google Scholar 

  13. Grappasonni, C., Habib, G., Detroux, T., Wang, F., Kerschen, G., Jensen, J.S.: Practical design of a nonlinear tuned vibration absorber. In: Proceedings of International Conference on Noise and Vibration Engineering (ISMA) (2014)

    Google Scholar 

Download references

Acknowledgements

The authors G. Habib, C. Grappasonni and G. Kerschen would like to acknowledge the financial support of the European Union (ERC Starting Grant NoVib 307265).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Habib .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Habib, G., Grappasonni, C., Kerschen, G. (2016). Enforcing Linear Dynamics Through the Addition of Nonlinearity. In: Kerschen, G. (eds) Nonlinear Dynamics, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-29739-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29739-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29738-5

  • Online ISBN: 978-3-319-29739-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics