Skip to main content

The Importance of Phase-Locking in Nonlinear Modal Interactions

  • Conference paper
  • First Online:
Nonlinear Dynamics, Volume 1

Abstract

In nonlinear systems the constituent linear modes may interact due to internal resonance. In this paper we classify two distinct classes of modal interactions: phase-locked interactions, in which there is a specific phase between the interacting modes; and phase-unlocked interactions, in which the modes may interact regardless of their phase. This discussion is accompanied by the study of an example structure in which both classes of interaction may be observed. The structure is used to demonstrate the differences between phase-locked and phase-unlocked interactions, both in terms of their individual influence on the response, and in terms of their influence on each other when both classes of interactions are present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rao, G.V., Iyengar, R.: Internal resonance and non-linear response of a cable under periodic excitation. J. Sound Vib. 149(1), 25–41 (1991)

    Article  Google Scholar 

  2. Lewandowski, R.: On beams membranes and plates vibration backbone curves in cases of internal resonance. Meccanica 31(3), 323–346 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Kerschen, G., Peeters, M., Golinval, J.C., Vakakis, A.F.: Nonlinear normal modes, part I: a useful framework for the structural dynamicist. Mech. Syst. Signal Process. 23(1), 170–194 (2009). Special Issue: Non-linear Structural Dynamics

    Google Scholar 

  4. Cammarano, A., Hill, T.L., Neild, S.A., Wagg, D.J.: Bifurcations of backbone curves for systems of coupled nonlinear two mass oscillator. Nonlinear Dyn. 77(1–2), 311–320 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Shaw, S.W., Pierre, C.: Non-linear normal modes and invariant manifolds. J. Sound Vib. 150(1), 170–173 (1991)

    Article  MathSciNet  Google Scholar 

  6. Renson, L., Kerschen, G.: Nonlinear normal modes of nonconservative systems. In: Proceedings of the SEM IMAC XXXI Conference, February 2013

    Google Scholar 

  7. Hill, T.L., Cammarano, A., Neild, S.A., Wagg, D.J.: Interpreting the forced responses of a two-degree-of-freedom nonlinear oscillator using backbone curves. J. Sound Vib. 349, 276–288 (2015)

    Article  Google Scholar 

  8. Hill, T.L., Cammarano, A., Neild, S.A., Wagg, D.J.: Out-of-unison resonance in weakly nonlinear coupled oscillators. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 471(2173) (2014)

    Google Scholar 

  9. Jiang, D., Pierre, C., Shaw, S.W.: The construction of non-linear normal modes for systems with internal resonance. Int. J. Non-Linear Mech. 40(5), 729–746 (2005)

    Article  MATH  Google Scholar 

  10. Lewandowski, R.: Solutions with bifurcation points for free vibration of beams: an analytical approach. J. Sound Vib. 177(2), 239–249 (1994)

    Article  MATH  Google Scholar 

  11. Neild, S.A., Wagg, D.J.: Applying the method of normal forms to second-order nonlinear vibration problems. Proc. R. Soc. A: Math. Phys. Eng. Sci. 467, 1141–1163 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wagg, D.J., Neild, S.A.: Approximate methods for analysing nonlinear vibrations. In: Nonlinear Vibration with Control. Solid Mechanics and Its Applications, vol. 218, pp. 145–209. Springer International Publishing, Cham (2015)

    Google Scholar 

  13. Neild, S.A., Champneys, A.R., Wagg, D.J., Hill, T.L., Cammarano, A.: The use of normal forms for analysing nonlinear mechanical vibrations. Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 373(2051) (2015)

    Google Scholar 

  14. Doedel, E.J., with major contributions from A. R. Champneys, Fairgrieve, T.F., Kuznetsov, Y.A., Dercole, F., Oldeman, B.E., Paffenroth, R.C., Sandstede, B., Wang, X.J., Zhang, C.: AUTO-07P: Continuation and Bifurcation Software for Ordinary Differential Equations. Concordia University, Montreal (2008). Available at: http://cmvl.cs.concordia.ca/

  15. Hill, T.L., Cammarano, A., Neild, S.A., Wagg, D.J. Relating backbone curves to the forced responses of nonlinear systems. In: Kerschen, G.(ed.) Nonlinear Dynamics, Volume 1, Conference Proceedings of the Society for Experimental Mechanics Series, pp. 113–122. Springer International Publishing, Cham (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. L. Hill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Hill, T.L., Cammarano, A., Neild, S.A., Wagg, D.J. (2016). The Importance of Phase-Locking in Nonlinear Modal Interactions. In: Kerschen, G. (eds) Nonlinear Dynamics, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-29739-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29739-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29738-5

  • Online ISBN: 978-3-319-29739-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics