Skip to main content

BRST Quantization of Gravity

  • Chapter
  • First Online:
  • 1551 Accesses

Part of the book series: Mathematical Physics Studies ((MPST))

Abstract

On the macroscopic level, Einstein’s general relativity (GR) has passed every test “with flying colors”; see Will (2006, 2014) for recent reviews. However, Einstein’s theory has thus far resisted every attempt at quantization, e.g., it is known to be perturbatively nonrenormalizable, partially due to its dimensional coupling constant.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    It has to be kept in mind that Newton’s gravitational constant G is one of the less precisely known constants of physics. In order to improve this situation, there are plans (Alexeev et al. 2001) to measure the gravitational attraction of two bodies in a spaceship (Project SEE), where the larger body will function as a shepherd for the movement of the test mass, similarly as in the rings of Saturn.

  2. 2.

    The grading permits using the direct sum \(\oplus \) of exterior forms carrying different form degree p and ghost number g, such that the graded commutator is more generally defined by \([\varPsi , \varPhi ] {:}{=} \varPsi \wedge \varPhi - (-1)^{(p_1+g_1)(p_2+g_2)} \varPhi \wedge \varPsi \), (Chang & Soo 1992).

  3. 3.

    For the CP-invariant Euler term, a similar result would hold, i.e., \(sL_\mathrm{Euler}=(-1)^{\mathrm{sig}+1}d\left( \varPsi ^{\alpha \beta }\wedge R_{\alpha \beta }^{(\star )}\right) \). However, the latter is only partially metric-free, since it involves the signature \(\mathrm{sig}\) of the metric implicitly in the definition of the Lie dual \(^{(\star )}\) (Blau & Thompson 1991), and therefore appears less well qualified as a starting point.

  4. 4.

    The instanton solutions of Yang’s theory of gravity, classified as early as (1981) by Mielke, are a special case of the Ansatz (8.6.4) for the choice \(\theta _\mathrm{L}=\theta _\mathrm{T}=0\) and \(\theta _\mathrm{L}^\star =\mp (-1)^\mathrm{sig}\). Interestingly enough, it can be regarded as a field redefinition (FR) of the linear connection \(\varGamma \) such that (8.6.4) is induced; see Mielke (2006b) for details. Such an FR was applied in Obukhov & Hehl (1996) to Euler- and Pontryagin-type terms. However, such deformations change the latter four-forms to no longer being d-exact terms, thus preventing a topological interpretation.

  5. 5.

    There occurs an interesting modification in the case that \(\theta _\mathrm{L}= 0\), since then the pseudoscalar curvature four-form \(\theta _\mathrm{T} R^{\alpha \beta }\wedge \vartheta _{\alpha }\wedge \vartheta _{\beta }/4\ell ^2\) needs to be subtracted from (8.6.12), which would induce (Mielke 1992) a partially chiral reformulation of Einsteinian gravity à la Ashtekar. However, this would violate parity P and even CP if \(\theta _\mathrm{T}\) remained real, (Mielke 2001).

  6. 6.

    One has to keep in mind that due to the Bach–Lanczos identity, the parameters \(b_{(N)}\) are not all independent; cf. Eq. (A.3.7) of Hehl et al. (1995).

References

  • Alexeev AD, Bronnikov KA, Kolosnitsyn NI, Konstantinov MY, Melnikov VN, Sanders AJ (2001) Measurement of the gravitational constant G in space (Project SEE): Sensitivity to orbital parameters and space charge effect. Metrologia 38(5):397–408

    Article  ADS  Google Scholar 

  • Alfaro J, Damgaard PH (1990) Field transformations, collective coordinates and BRST invariance. Ann Phys 202(2):398–435

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Aouane R, Menaa M, Tahiri M (2007) On torsional observables in topological 4D gravity. Class Quantum Gravity 24(10):2445–2451

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Atiyah M (1990) Quantum field theory and low-dimensional geometry. Prog Theor Phys Suppl 102:1–13

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Atiyah MF, Hitchin NJ, Singer IM (1978) Self-duality in four-dimensional Riemannian geometry. Proceedings of the Royal Society of London a: mathematical, physical and engineering sciences 362:425–461

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Baulieu L (1985) Perturbative gauge theories. Phys Rep 129(1):1–74

    Article  ADS  MathSciNet  Google Scholar 

  • Baulieu L (1987) On the cohomological structure of gauge theories. In: Pierre Ramond, Raymond Stora (eds.) Architecture of fundamental interactions at short distances: Proceedings, Les Houches 44th summer school of theoretical physics: Les Houches, France, July-1 & August-8, 1985, Amsterdam: North-Holland, pp 999–1011

    Google Scholar 

  • Baulieu L, Singer IM (1988) Topological Yang-Mills symmetry. Nucl Phys B-Proc Suppl 5(2):12–19

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Baulieu L, Tanzini A (2002) Topological gravity versus supergravity on manifolds with special holonomy. J High Energy Phys 03:015

    Google Scholar 

  • Benn IM, Dereli T, Tucker RW (1981) Double-dual solutions of generalized theories of gravitation. Gen Relat Gravit 13(6):581–589

    Article  ADS  MathSciNet  Google Scholar 

  • Birmingham D, Blau M, Ranowski M, Thompson G (1991) Topological field theory. Phys Rep 209(4):129–340

    Article  ADS  MathSciNet  Google Scholar 

  • Blau M, Thompson G (1991) Do metric independent classical actions lead to topological field theories? Phys Lett B 255(4):535–542

    Article  ADS  MathSciNet  Google Scholar 

  • Braga NRF, Godinho CFL (2000) Extended BRST invariance in topological Yang-Mills theory reexamined. Phys Rev D 61(12):125019

    Article  ADS  MathSciNet  Google Scholar 

  • Chang LN, Soo CP (1992) BRST cohomology and invariants of four-dimensional gravity in Ashtekar variables. Phys Rev D 46:4257–4262

    Article  ADS  MathSciNet  Google Scholar 

  • Cognola G, Elizalde E, Nojiri SI, Odintsov SD, Zerbini S (2007) String-inspired Gauss-Bonnet gravity reconstructed from the universe expansion history and yielding the transition from matter dominance to dark energy. Phys Rev D 75(8):086002

    Article  ADS  MathSciNet  Google Scholar 

  • de Carvalho CA, Baulieu L (1992) Local BRST symmetry and superfield formulation of the Donaldson-Witten theory. Phys Lett B 275(3):323–330

    Article  ADS  MathSciNet  Google Scholar 

  • Dereli T, Tucker RW (2002) A broken gauge approach to gravitational mass and charge. J High Energy Phys 03:041

    Google Scholar 

  • Deser S, Sandora M, Waldron A, Zahariade G (2014) Covariant constraints for generic massive gravity and analysis of its characteristics. Phys Rev D 90(10):104043

    Article  ADS  Google Scholar 

  • Faddeev LD (1996) How we understand “quantization” a hundred years after Max Planck. Physikalische Blätter 52(7–8):689–690

    Google Scholar 

  • Fairchild EE (1976) Gauge theory of gravitation. Phys Rev D 14(2):384

    Article  ADS  MathSciNet  Google Scholar 

  • Fairchild EE (1977) Yang-Mills formulation of gravitational dynamics. Phys Rev D 16(8):2438

    Article  ADS  MathSciNet  Google Scholar 

  • Feynman RP, Morinigo FB, Wagner W, Hatfield B (1995) Feynman Lectures on Gravitation. Addison-Wesley, Boston

    Google Scholar 

  • Grensing G (2002) On ghost fermions. Eur Phys J C-Part Fields 23(2):377–387

    Article  ADS  MATH  Google Scholar 

  • Gronwald F (1998) BRST antifield treatment of metric-affine gravity. Phys Rev D 57(2):961

    Article  ADS  MathSciNet  Google Scholar 

  • Gu CH, Hu HS, Li DQ, Shen CL, Xin YL, Yang CN (1978) Riemannian spaces with local duality and gravitational instantons. Sci Sin 21:475–482

    MathSciNet  MATH  Google Scholar 

  • Hecht RD, Lemke J, Wallner RP (1991) Can Poincaré gauge theory be saved? Phys Rev D 44(8):2442

    Article  ADS  MathSciNet  Google Scholar 

  • Hecht RD, Nester JM, Zhytnikov VV (1996) Some Poincaré gauge theory Lagrangians with well-posed initial value problems. Phys Lett A 222(1):37–42

    Article  ADS  Google Scholar 

  • Hehl FW, McCrea JD, Mielke EW, Ne’eman Y (1989) Progress in metric-affine gauge theories of gravity with local scale invariance. Found Phys 19(9):1075–1100

    Article  ADS  MathSciNet  Google Scholar 

  • Hehl FW, McCrea JD, Mielke EW, Ne’eman Y (1995) Metric-affine gauge theory of gravity: field equations, Noether identities, world spinors, and breaking of dilation invariance. Phys Rep 258(1):1–171

    Article  ADS  MathSciNet  Google Scholar 

  • Kapner DJ, Cook TS, Adelberger EG, Gundlach JH, Heckel BR, Hoyle CD, Swanson HE (2007) Tests of the gravitational inverse-square law below the dark-energy length scale. Phys Rev Lett 98(2):021101

    Article  ADS  Google Scholar 

  • Kaul RK (2006) Gauge theory of gravity and supergravity. Phys Rev D 73(6):065027

    Article  ADS  MathSciNet  Google Scholar 

  • Kibble TWB, Stelle KS (1986) Gauge theories of gravity and supergravity. In: Ezawa H, Kamefuchi S (eds) Progress in quantum field theory. Elsevier, Amsterdam, pp 57–81

    Google Scholar 

  • Kreimer D, Mielke EW (2001) Comment on: topological invariants, instantons, and the chiral anomaly on spaces with torsion. Phys Rev D 63(4):048501

    Article  ADS  MathSciNet  Google Scholar 

  • Kuhfuß R, Nitsch J (1986) Propagating modes in gauge field theories of gravity. Gen Relat Gravit 18(12):1207–1227

    Article  ADS  MathSciNet  Google Scholar 

  • Labastida JMF, Pernici M (1988) A Lagrangian for topological gravity and its BRST quantization. Phys Lett B 213(3):319–324

    Article  ADS  MathSciNet  Google Scholar 

  • Lee CY, Ne’eman Y (1990) Renormalization of gauge-affine gravity. Phys Lett B 242(1):59–63

    Article  ADS  MathSciNet  Google Scholar 

  • MacDowell SW, Mansouri F (1977) Unified geometric theory of gravity and supergravity. Phys Rev Lett 38(14):739

    Article  ADS  MathSciNet  Google Scholar 

  • McCrea JD (1987) Poincaré gauge theory of gravitation: foundations, exact solutions and computer algebra. In: Differential Geometric Methods in Mathematical Physics. Springer, Heidelberg, pp 222–237

    Google Scholar 

  • McCrea JD (1995) REDUCE in general relativity and Poincaré gauge theory. In: Reboucas MJ, Roque WL (eds.) Algebraic computing in general relativity: lecture notes from the first Brazilian school on computer algebra, vol 2, pp.173–263. Oxford University Press

    Google Scholar 

  • Mielke EW (1981) On pseudoparticle solutions in Yang’s theory of gravity. Gen Relat Gravit 13(2):175–187

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Mielke EW (1984a) On pseudoparticle solutions in the Poincaré gauge theory of gravity. Fortschritte der Physik 32(12):639–660

    Article  ADS  MathSciNet  Google Scholar 

  • Mielke EW (1984b) Reduction of the Poincaré gauge field equations by means of duality rotations. J Math Phys 25(3):663–668

    Article  ADS  MathSciNet  Google Scholar 

  • Mielke EW (1987) Geometrodynamics of Gauge fields - on the geometry of Yang-Mills and gravitational gauge theories (Akademie-Verlag, Berlin)

    Google Scholar 

  • Mielke EW (1992) Ashtekar’s complex variables in general relativity and its teleparallelism equivalent. Ann Phys 219(1):78–108

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Mielke EW (2001) Beautiful gauge field equations in Clifforms. Int J Theor Phys 40(1):171–190

    Article  MathSciNet  MATH  Google Scholar 

  • Mielke EW (2004) Consistent coupling to Dirac fields in teleparallelism: comment on metric-affine approach to teleparallel gravity. Phys Rev D 69(12):128501

    Article  ADS  Google Scholar 

  • Mielke EW (2006a) Anomalies and gravity. In: M.A. Pérez, L.F. Urrutia, and L. Villaseñor (eds) Particles and fields: commemorative volume of the division of particles and fields of the Mexican physical society. AIP Conference Proceedings, Melville, NY, Vol 857, pp 246–257

    Google Scholar 

  • Mielke EW (2006b) Duality and a renormalization scheme for Einsteinian gravity as a fix point within a gravitational gauge framework. Electron J Theor Phys 3(12):1–18

    MATH  Google Scholar 

  • Mielke EW (2008) Einsteinian gravity from BRST quantization of a topological action. Rev D 77(084020):1–12

    MathSciNet  Google Scholar 

  • Mielke EW, Maggiolo AAR (2003) Algebra for a BRST quantization of metric-affine gravity. Gen Relat Gravit 35(5):771–789

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Mielke EW, Maggiolo AAR (2005) Duality in Yang’s theory of gravity. Gen Relat Gravit 37(5):997–1007

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Mielke EW, McCrea JD, Ne’eman Y, Hehl FW (1993) Avoiding degenerate coframes in an affine gauge approach to quantum gravity. Phys Rev D 48(2):673

    Article  ADS  MathSciNet  Google Scholar 

  • Mielke EW, Romero ES (2006) Cosmological evolution of a torsion-induced quintaxion. Phys Rev D 73(4):043521

    Article  ADS  MathSciNet  Google Scholar 

  • Mielke EW, Schunck FE (2001) Are axidilaton stars massive compact halo objects? Gen Relat Gravit 33(5):805–813

    Article  ADS  MATH  Google Scholar 

  • Misner CW, Wheeler JA (1957) Classical physics as geometry. Ann Phys 2:525–603

    Google Scholar 

  • Myers RC, Periwal V (1991) Invariants of smooth 4-manifolds from topological gravity. Nucl Phys B 361(1):290–310

    Article  ADS  MathSciNet  Google Scholar 

  • Nakamichi A, Sugamoto A, Oda I (1991) Topological four-dimensional self-dual gravity. Phys Rev D 44(12):3835

    Article  ADS  MathSciNet  Google Scholar 

  • Ne’eman Y (1998) A superconnection for Riemannian gravity as spontaneously broken SL (4, R) gauge theory. Phys Lett B 427(1):19–25

    Article  ADS  MathSciNet  Google Scholar 

  • Nieh HT (2007) A torsional topological invariant. Int J Mod Phys A 22(29):5237–5244

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Obukhov YN, Hehl FW (1996) On the relation between quadratic and linear curvature Lagrangians in Poincare gauge gravity. Acta Phys Pol B27:2685–2694

    Google Scholar 

  • Pagels HR (1984) Gravitational gauge fields and the cosmological constant. Phys Rev D 29(8):1690

    Article  ADS  Google Scholar 

  • Perry MJ, Teo E (1993) Topological conformal gravity in four dimensions. Nucl Phys B 401(1–2):206–238

    Google Scholar 

  • Rainich GY (1925) Electrodynamics in the general relativity theory. Trans Am Math Soc 27(1):106–136

    Article  MathSciNet  MATH  Google Scholar 

  • Rund H, Lovelock D (1972) Variational principles in the general theory of relativity. Jahresbericht der Deutschen Mathematiker-Vereinigung 74:1–65

    MATH  Google Scholar 

  • Schimming R, Schmidt H-J (2004) On the history of fourth order metric theories of gravitation. Schriftenr. Gesch. Naturwissenschaften Tech. Med. 27:41–48

    MathSciNet  Google Scholar 

  • Sezgin E, van Nieuwenhuizen P (1980) New ghost-free gravity Lagrangians with propagating torsion. Phys Rev D 21(12):3269

    Article  ADS  MathSciNet  Google Scholar 

  • Stelle KS (1977) Renormalization of higher-derivative quantum gravity. Phys Rev D 16(4):953

    Article  ADS  MathSciNet  Google Scholar 

  • ’t Hooft G, (2009) Unitarity in the Brout-Englert-Higgs mechanism for gravity. Subnucl Ser 45:131

    Google Scholar 

  • Torre CG (1990) A topological field theory of gravitational instantons. Phys Lett B 252(2):242–246

    Article  ADS  MathSciNet  Google Scholar 

  • Tresguerres R, Mielke EW (2000) Gravitational Goldstone fields from affine gauge theory. Phys Rev D 62(4):044004

    Article  ADS  MathSciNet  Google Scholar 

  • van Holten JW (2005) Aspects of BRST quantization. Lect Notes Phys 659(99):99–166

    ADS  MathSciNet  MATH  Google Scholar 

  • Will CM (2006) Was Einstein right? Annalen der Physik 15(1–2):19–33

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Will CM (2014) The confrontation between general relativity and experiment. Living Rev Rel 17:4

    Article  MATH  Google Scholar 

  • Witten E (1988a) Topological gravity. Phys Lett B 206(4):601–606

    Article  ADS  MathSciNet  Google Scholar 

  • Witten E (1988b) Topological quantum field theory. Commun Math Phys 117(3):353–386

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Yang CN (1974) Integral formalism for gauge fields. Phys Rev Lett 33:445–447

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Yo HJ, Nester JM (2002) Hamiltonian analysis of Poincaré gauge theory: higher spin modes. Int J Mod Phys D 11(05):747–779

    Article  ADS  MATH  Google Scholar 

  • Zhytnikov VV (1994) Wavelike exact solutions of R+ R2+ Q2 gravity. J Math Phys 35(11):6001–6017

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eckehard W. Mielke .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mielke, E.W. (2017). BRST Quantization of Gravity. In: Geometrodynamics of Gauge Fields. Mathematical Physics Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-29734-7_8

Download citation

Publish with us

Policies and ethics