Skip to main content

Einstein–Cartan Theory

  • Chapter
  • First Online:
Geometrodynamics of Gauge Fields

Part of the book series: Mathematical Physics Studies ((MPST))

  • 1521 Accesses

Abstract

The difference between Einstein’s general relativity and its Cartan extension is analyzed classically as well as within the scenario of asymptotic safety of quantum gravity. In particular, we focus on the four-fermion interaction, which distinguishes the Einstein–Cartan theory from its Riemannian limit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Adding torsion squared terms (Daum & Reuter 2012, 2013) is not an unambiguous procedure, since the particular combination \( T^{\alpha }\wedge \;^{*}\!\Bigl (\,^{(1)}\!T_{\alpha } - 2\,^{(2)}\!T_{\alpha } -{1\over 2}\,^{(3)}\!T_{\alpha }\Bigr )\) of irreducible pieces is related to a nontopological boundary term derived from the dual CS term \(C_\mathrm{TT^*}:= \vartheta ^{\alpha }\wedge \,^* T_{\alpha }\). In the space of gravity theories, the term \(d C_\mathrm{TT^*}\) interrelates GR with its teleparallelism equivalent (Mielke 1992). Exactly, the above teleparallel “nucleus” leaves its traces in the controversies (Hecht et al. 1996; Ho & Nester 2011) about the well-posedness of the classical Cauchy problem and the particle content of the (broken) Poincaré gauge theory.

References

  • Alves V, Gomes M, Pinheiro S, Da Silva A (1999) Four-fermion field theories and the Chern-Simons field: a renormalization group study. Phys Rev D 60(2):027701

    Article  ADS  Google Scholar 

  • Bazzocchi F, Fabbrichesi M, Percacci R, Tonero A, Vecchi L (2011) Fermions and Goldstone bosons in an asymptotically safe model. Phys Lett B 705(4):388–392

    Article  ADS  Google Scholar 

  • Benedetti D, Speziale S (2011) Perturbative quantum gravity with the Immirzi parameter. J High Energy Phys 6:1–31

    MathSciNet  MATH  Google Scholar 

  • Bjorken J (2013) Darkness: What comprises empty space? Ann Phys 525(5):A67–A79

    Article  ADS  Google Scholar 

  • Blagojević M, Hehl FW (2013) Gauge theories of gravitation: a reader with commentaries. Imperial College Press, London

    Google Scholar 

  • Brans CH (1999) Absolute spacetime: the twentieth century ether. Gen Relativ Gravit 31(5):597–607

    Google Scholar 

  • Cartan É (1922) Sur une généralisation de la notion de courbure de Riemann et les espaces à torsion. CR Acad Sci (Paris) 174(593):2

    Google Scholar 

  • Cartan É (1924) On manifolds with an affine connection and the theory of general relativity. (English translation of the French original (Bibliopolis, Napoli 1986); for a book review, see Hehl FW, General Relativity and Gravitation, vol 21, p 315) (1989)

    Google Scholar 

  • Contillo A, Hindmarsh M, Rahmede C (2012) Renormalization group improvement of scalar field inflation. Phys Rev D 85(4):043501

    Article  ADS  Google Scholar 

  • Daum J-E, Reuter M (2012) Renormalization group flow of the Holst action. Phys Lett B 710(1):215–218

    Article  ADS  Google Scholar 

  • Daum J-E, Reuter M (2013) Einstein-Cartan gravity, asymptotic safety, and the running Immirzi parameter. Ann Phys 334:351–419

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Eddington AS (1924) The mathematical theory of relativity, 2nd edn. Chelsea Publ, New York

    Google Scholar 

  • Eichhorn A, Gies H (2011) Light fermions in quantum gravity. New J Phys 13(12):125012

    Article  Google Scholar 

  • Falls K, Litim D, Nikolakopoulos K, Rahmede C (2016) Further evidence for asymptotic safety of quantum gravity. Phys Rev D 93(10):104022

    Google Scholar 

  • Guzzo M, Nunokawa H, Tomas R (2002) Testing the principle of equivalence by supernova neutrinos. Astropart Phys 18(3):277–286

    Article  ADS  Google Scholar 

  • Hawking SW, Ellis GFR (1973) The large scale structure of space-time. Cambridge University Press, Cambridge

    Google Scholar 

  • Hecht RD, Nester JM, Zhytnikov VV (1996) Some Poincaré gauge theory Lagrangians with well-posed initial value problems. Phys Lett A 222(1):37–42

    Article  ADS  Google Scholar 

  • Hehl F (1970) Spin und Torsion in der allgemeinen Relativitätstheorie, Habilitationsschrift, Universität Clausthal

    Google Scholar 

  • Hehl F, Datta B (1971) Nonlinear spinor equation and asymmetric connection in general relativity. J Math Phys 12(7):1334–1339

    Article  ADS  MathSciNet  Google Scholar 

  • Hehl FW, Von Der Heyde P, Kerlick GD (1974) General relativity with spin and torsion and its deviations from Einstein’s theory. Phys Rev D 10(4):1066

    Article  ADS  MathSciNet  Google Scholar 

  • Hehl FW, Von der Heyde P, Kerlick GD, Nester JM (1976) General relativity with spin and torsion: foundations and prospects. Rev Mod Phys 48(3):393

    Article  ADS  MathSciNet  Google Scholar 

  • Hehl FW, McCrea JD, Mielke EW, Ne’eman Y (1995) Metric-affine gauge theory of gravity: field equations. Noether identities, world spinors, and breaking of dilation invariance. Phys Rep 258(1):1–171

    Article  ADS  MathSciNet  Google Scholar 

  • Herrmann S, Senger A, Möhle K, Nagel M, Kovalchuk E, Peters A (2009) Rotating optical cavity experiment testing Lorentz invariance at the 10–17 level. Phys Rev D 80(10):105011

    Article  ADS  Google Scholar 

  • Ho F-H, Nester JM (2011) Poincaré gauge theory with coupled even and odd parity dynamic spin-0 modes: dynamical equations for isotropic Bianchi cosmologies. Int J Mod Phys D 20(11):2125–2138

    Article  ADS  MATH  Google Scholar 

  • Hojman R, Mukku C, Sayed W (1980) Parity violation in metric-torsion theories of gravitation. Phys Rev D 22(8):1915

    Article  ADS  Google Scholar 

  • Hooft ’t G (2007) Renormalization and gauge invariance. Prog Theor Phys Suppl 170:56–71

    Google Scholar 

  • Hughes R (1993) The equivalence principle. Contemp Phys 34(4):177–191

    Article  ADS  Google Scholar 

  • Kaiser D (2007) When fields collide. Sci Am 296(6):62–69

    Article  Google Scholar 

  • Kerlick GD (1975) Spin and torsion in general relativity: foundations, and implications for astrophysics and cosmology, Ph D thesis, Princeton University

    Google Scholar 

  • Khriplovich I (2012) Gravitational four-fermion interaction on the Planck scale. Phys Lett B 709(3):111–113

    Article  ADS  Google Scholar 

  • Khriplovich I, Rudenko A (2012) Cosmology constrains gravitational four-fermion interaction. J Cosmol Astropart Phys 11:040

    Article  ADS  Google Scholar 

  • Kibble TW (1961) Lorentz invariance and the gravitational field. J Math Phys 2(2):212–221

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kiselev V, Timofeev S (2011) Renormalization-group analysis of the cosmological constraint on the Higgs scalar mass. Phys At Nucl 74(5):778–782

    Article  Google Scholar 

  • Kramer M, Wex N (2009) The double pulsar system: a unique laboratory for gravity. Class Quantum Gravity 26(7):073001

    Article  ADS  MATH  Google Scholar 

  • Kreimer D (2008) A remark on quantum gravity. Ann Phys 323(1):49–60

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kuchowicz B (1975a) Cosmology with spin and torsion. Part I. Physical and mathematical foundations. Acta Cosmol 3:109–129

    Google Scholar 

  • Kuchowicz B (1975b) Cosmology with spin and torsion. Part II. Spatially homogeneous aligned spin models with the Weyssenhoff fluid. Acta Cosmol 4:67–100

    Google Scholar 

  • Kuchowicz B (1975c) The Einstein-Cartan equations in astrophysically interesting situations. I. the case of spherical symmetry. Acta Phys Pol B 6:555–575

    Google Scholar 

  • Kuhfuss R, Nitsch J (1986) Propagating modes in gauge field theories of gravity. Gen Relat Gravit 18(12):1207–1227

    Article  ADS  MathSciNet  Google Scholar 

  • Lee C-Y, Ne’eman Y (1990) Renormalization of gauge-affine gravity. Phys Lett B 242(1):59–63

    Article  ADS  MathSciNet  Google Scholar 

  • Litim DF, Percacci R, Rachwał L (2012) Scale-dependent Planck mass and Higgs VEV from holography and functional renormalization. Phys Lett B 710(3):472–477

    Article  ADS  Google Scholar 

  • Mielke EW (1992) Ashtekar’s complex variables in general relativity and its teleparallelism equivalent. Ann Phys 219(1):78–108

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Mielke EW (2001) Beautiful gauge field equations in Clifforms. Int J Theor Phys 40(1):171–190

    Article  MathSciNet  MATH  Google Scholar 

  • Mielke EW (2002) Chern-Simons solutions of the chiral teleparallelism constraints of gravity. Nucl Phys B 622(1):457–471

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Mielke EW (2008) Einsteinian gravity from BRST quantization of a topological action. Phys Rev D 77(8):084020

    Article  ADS  MathSciNet  Google Scholar 

  • Mielke EW (2009) Topologically modified teleparallelism, passing through the Nieh-Yan functional. Phys Rev D 80(6):067502

    Article  ADS  Google Scholar 

  • Mielke EW (2011) Weak equivalence principle from a spontaneously broken gauge theory of gravity. Phys Lett B 702(4):187–190

    Article  ADS  MathSciNet  Google Scholar 

  • Mielke EW (2012) Einstein-Weyl gravity from a topological gauge SL (5, \(\mathbb{R})\) invariant action. Adv Appl Clifford Algebras 22(3):803–817

    Google Scholar 

  • Mielke EW (2013) Symmetry breaking in topological quantum gravity. Int J Mod Phys D 22(05):1330009

    Article  ADS  MATH  Google Scholar 

  • Mielke EW (2015) Asymptotic safety of the Cartan induced four-fermion interaction?. In: Jantzen RT, Rosquist K, Ruffini R (eds), Proceedings of the Thirteenth Marcel Grossman Meeting on General Relativity, (World Scientific, Singapore), Stockholm, Sweden, 1–7 July 2012, pp 2245–2248

    Google Scholar 

  • Mielke EW, Macias A (1999) Chiral supergravity and anomalies, Annalen der Physik 8:301–317

    Google Scholar 

  • Mielke EW, Romero ES (2006) Cosmological evolution of a torsion-induced quintaxion. Phys Rev D 73(4):043521

    Article  ADS  MathSciNet  Google Scholar 

  • Mielke EW, Hehl FW, McCrea JD (1989) Belinfante type invariance of the Noether identities in a Riemannian and a Weitzenböck spacetime. Phys Lett A 140(7):368–372

    Article  ADS  MathSciNet  Google Scholar 

  • Murayama H (2004) CPT tests: kaon vs. neutrinos. Phys Lett B 597(1):73–77

    Article  ADS  MathSciNet  Google Scholar 

  • Ne’eman Y (2006) Cosmology, Einstein’s “Mach Principle” and the Higgs fields. Int J Mod Phys A 21(13–14):2773–2779

    Google Scholar 

  • Nester J, Isenberg J (1977) Torsion singularities. Phys Rev D 15:2078

    Article  ADS  Google Scholar 

  • Nicolai H (2014) Quantum gravity: the view from particle physics. Fundam Theor Phys 177:369

    Google Scholar 

  • Obukhov YN, Hehl FW (2012) Extended Einstein-Cartan theory à la Diakonov: the field equations. Phys Lett B 713(3):321–325

    Article  ADS  MathSciNet  Google Scholar 

  • O’Connel R (1976a) Contact interactions in the Einstein and Einstein-Cartan-Sciama-Kibble (ECSK) theories of gravitation. Phys Rev Lett 37:2078

    Google Scholar 

  • O’Connell R (1976b) Contact interactions in the Einstein and Einstein-Cartan-Sciama-Kibble (ECSK) theories of gravitation. Phys Rev Lett 37(25):1653

    Google Scholar 

  • O’Connel R (1977) Attractive spin-spin contact interactions in the Einstein-Cartan- Sciama-Kibble torsion theory of gravitation. Phys Rev D 16:1247

    Article  ADS  Google Scholar 

  • Overduin J, Everitt F, Mester J, Worden P (2009) The science case for STEP. Adv Space Res 43(10):1532–1537

    Article  ADS  Google Scholar 

  • Popławski NJ (2012) Four-fermion interaction from torsion as dark energy. Gen Relativ Gravit 44(2):491–499

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Proville L, Rodney D, Marinica M-C (2012) Quantum effect on thermally activated glide of dislocations. Nature Materials 11(10):845–849

    Google Scholar 

  • Reuter M, Saueressig F (2012) Quantum Einstein gravity. New J Phys 14(5):055022

    Article  MathSciNet  Google Scholar 

  • Reyes R, Mandelbaum R, Seljak U, Baldauf T, Gunn JE, Lombriser L, Smith RE (2010) Confirmation of general relativity on large scales from weak lensing and galaxy velocities. Nature 464(7286):256–258

    Article  ADS  Google Scholar 

  • Schunck FE, Kusmartsev FV, Mielke EW (2005) Dark matter problem and effective curvature Lagrangians. Gen Relativ Gravit 37(8):1427–1433

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Sciama DW (1962) On the analogy between charge and spin in general relativity. In: Recent Developments of General Relativity. Pergamon + PWN, Oxford, p 415

    Google Scholar 

  • Shao L (2014) Test of local Lorentz invariance violation of gravity in the standard model extension with pulsars. Phys Rev Lett 112:111103

    Google Scholar 

  • Shaposhnikov M, Wetterich C (2010) Asymptotic safety of gravity and the Higgs boson mass. Phys Lett B 683(2):196–200

    Article  ADS  Google Scholar 

  • Trautman A (1972) On the Einstein–Cartan equations I-IV, Bull Acad Pol Sci Ser Sci Math Astron Phys 20, 185, 503, 895(21):345

    Google Scholar 

  • Trautman A (1973a) On the structure of the Einstein-Cartan equations. Sympos Math 12:139–162

    Google Scholar 

  • Trautman A (1973b) Spin and torsion may avert gravitational singularities. Nature 242(114):7–8

    Google Scholar 

  • Trautman A (2006) Einstein–Cartan theory in: encyclopedia of mathematical physics, vol 2. Elsevier, Oxford. pp 189–195

    Google Scholar 

  • Veltman MJ (2000) Nobel lecture: from weak interactions to gravitation. Rev Mod Phys 72(2):341

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Wagner TA, Schlamminger S, Gundlach J, Adelberger E (2012) Torsion-balance tests of the weak equivalence principle. Class Quantum Gravity 29(18):184002

    Article  ADS  Google Scholar 

  • Weinberg S (2005) Einstein’s mistakes. Phys Today 58N11:31

    Google Scholar 

  • Weinberg S (1979) Ultraviolet divergences in quantum theories of gravitation. In: Hawking SW, Israel W (eds), General Relativity: An Einstein centenary survey, Cambridge University Press, pp 790–831

    Google Scholar 

  • Westman HF, Zlosnik TG (2013) Cartan gravity, matter fields, and the gauge principle. Ann Phys 334:157–197

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Wetterich C (1993) Exact evolution equation for the effective potential. Phys Lett B 301(1):90–94

    Article  ADS  MathSciNet  Google Scholar 

  • Weyl H (1929a) Elektron und Gravitation. I, Zeitschrift für Physik A 56(5):330–352

    Google Scholar 

  • Weyl H (1929b) Gravitation and the electron. Proc Natl Acad Sci 15(4):323–334

    Google Scholar 

  • Weyl H (1950) A remark on the coupling of gravitation and electron. Phys Rev 77(5):699

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Will CM (2006) The confrontation between general relativity and experiment. Liv Rev Relat 9

    Google Scholar 

  • Will CM (2011) Viewpoint: Finally, results from gravity probe B. Physics 4:43

    Article  Google Scholar 

  • Wise DK (2010) MacDowell-Mansouri gravity and Cartan geometry. Class Quantum Gravity 27(15):155010

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eckehard W. Mielke .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mielke, E.W. (2017). Einstein–Cartan Theory. In: Geometrodynamics of Gauge Fields. Mathematical Physics Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-29734-7_5

Download citation

Publish with us

Policies and ethics