Skip to main content

Topological \(\mathrm {SL} (5,\mathbb {R})\) Gauge-Invariant Action

  • Chapter
  • First Online:
Geometrodynamics of Gauge Fields

Part of the book series: Mathematical Physics Studies ((MPST))

  • 1465 Accesses

Abstract

Symmetry plays a predominant role in our perception, although most of the real patterns we observe are far from symmetric. However, in modern particle physics it is much more economical in the mathematical formulation to start from highly symmetric and hence idealized configurations than to try to model the real world directly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the realm of gravity, topological ideas date back to Riemann, Clifford, and Weyl, who found a rather concrete realization in the wormholes (Mielke 1977) of Wheeler characterized by the Betti number related to the Euler–Poincaré invariant.

  2. 2.

    The geometric consequences of a “shifted” gravitational Higgs field are analyzed in (Mielke 2011b).

References

  • Bernstein A, Holstein BR (2013) Neutral pion lifetime measurements and the QCD chiral anomaly. Rev Mod Phys 85(1):49

    Article  ADS  Google Scholar 

  • Bjørken J (2010) Emergent photons and gravitons: the problem of vacuum structure. In: Alan Kostelecký V. (ed) Proceedings, 5th meeting on CPT and Lorentz Symmetry (CPT 10): Bloomington, Indiana, June 28–July 2, 2010. World Scientific, Singapore

    Google Scholar 

  • Brans CH (1999) Absolute spacetime: the twentieth century ether. General Relativ Gravit 31(5):597–607

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Castro C (2002) Anti-de Sitter gravity from BF-Chern-Simons-Higgs theories. Mod Phys Lett A 17(32):2095–2103

    Google Scholar 

  • Chamseddine AH (1978) Massive supergravity from spontaneously breaking orthosymplectic gauge symmetry. Ann Phys 113(1):219–234

    Article  ADS  MathSciNet  Google Scholar 

  • Chen Y, Teo E (2011) A new AF gravitational instanton. Phys Lett B 703(3):359–362

    Article  ADS  MathSciNet  Google Scholar 

  • Constantinidis CP, Piguet O, Gieres F, Sarandy MS (2002) On the symmetries of BF models and their relation with gravity. J High Energy Phys 01:017

    Google Scholar 

  • Daum J-E, Reuter M (2012) Renormalization group flow of the Holst action. Phys Lett B 710(1):215–218

    Google Scholar 

  • Dunne GV (2012) Heat kernels and zeta functions on fractals. J Phys A: Math Theor 45(37):374016

    Article  MathSciNet  MATH  Google Scholar 

  • Eddington AS (1923) The mathematical theory of relativity. University Press, Cambridge

    Google Scholar 

  • Eichhorn A (2012) Observable consequences of quantum gravity: can light fermions exist? J Phys: Conf Ser 360:012057 (IOP Publishing)

    Google Scholar 

  • Englert F, Gunzig E, Truffin C, Windey P (1975) Conformal invariant general relativity with dynamical symmetry breakdown. Phys Lett B 57(1):73–77

    Article  ADS  MathSciNet  Google Scholar 

  • Fairbairn WJ, Perez A (2008) Extended matter coupled to BF theory. Phys Rev D 78(2):024013

    Article  ADS  MathSciNet  Google Scholar 

  • Fradkin E, Tseytlin AA (1982) Renormalizable asymptotically free quantum theory of gravity. Nucl Phys B 201(3):469–491

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Frieman J, Turner M, Huterer D (2008) Dark energy and the accelerating universe. Ann Rev Astron Astrophys 46:385

    Google Scholar 

  • Goldhaber AS, Nieto MM (2010) Photon and graviton mass limits. Rev Mod Phys 82(1):939

    Article  ADS  Google Scholar 

  • Hehl FW, Lemke J, Mielke EW (1991) Two lectures on fermions and gravity. In: Debrus J, Hirshfeld AC (eds) Geometry and theoretical physics, Bad Honnef lectures, 12–16 Feb 1990. Springer, Berlin (1991), pp. 56–140

    Google Scholar 

  • Hehl FW, McCrea JD, Mielke EW, Ne’eman Y (1995) Metric-affine gauge theory of gravity: field equations, Noether identities, world spinors, and breaking of dilation invariance. Phys Rep 258(1):1–171

    Google Scholar 

  • Higgs P (1959) Quadratic Lagrangians and general relativity. Il Nuovo Cimento 11(6):816–820

    Google Scholar 

  • Higgs P (2007) Prehistory of the Higgs boson. Comptes Rendus Physique 8(9):970–972

    Article  ADS  Google Scholar 

  • Horowitz GT (1989) Exactly soluble diffeomorphism invariant theories. Commun Math Phys 125(3):417–437

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kaganovich A (1989) Some properties of gravity induced by dynamical symmetry breaking. Phys Lett B 222(3):364–367

    Article  ADS  MathSciNet  Google Scholar 

  • Kaiser D (2007) When fields collide. Sci Am 296(6):62–69

    Article  Google Scholar 

  • Kiselev V, Timofeev S (2011) Renormalization-group analysis of the cosmological constraint on the Higgs scalar mass. Phys Atomic Nucl 74(5):778–782

    Google Scholar 

  • Kobayashi, S. (1972), Transformation groups in differential geometry. Springer, Berlin

    Google Scholar 

  • Kreimer D (2008) A remark on quantum gravity. Ann Phys 323(1):49–60

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Laiho J, Coumbe D (2011) Evidence for asymptotic safety from lattice quantum gravity. Phys Rev Lett 107(16):161301

    Article  ADS  Google Scholar 

  • Lucchesi C, Piguet O, Sorella SP (1993) Renormalization and finiteness of topological BF theories. Nucl Phys B 395(1):325–353

    Article  ADS  MathSciNet  Google Scholar 

  • MacDowell SW, Mansouri F (1977) Unified geometric theory of gravity and supergravity. Phys Rev Lett 38(14):739

    Article  ADS  MathSciNet  Google Scholar 

  • McCarthy JG, Pagels HR (1986) General relativity as the surface action of a five-dimensional gauge theory. Nucl Phys B 266(3):687–708

    Article  ADS  MathSciNet  Google Scholar 

  • Mielke EW (1977) Knot wormholes in geometrodynamics? General Relativ Gravit 8(3):175–196

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Mielke EW (1981) On pseudoparticle solutions in Yang’s theory of gravity. General Relativ Gravit 13(2):175–187

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Mielke EW (1987) Geometrodynamics of gauge fields. On the geometry of Yang–Mills and gravitational gauge theories. Akademie-Verlag, Berlin

    Google Scholar 

  • Mielke EW (2001) Beautiful gauge field equations in Clifforms. Int J Theor Phys 40(1):171–190

    Article  MathSciNet  MATH  Google Scholar 

  • Mielke EW (2006) Anomalies and gravity. In: Particles and Fields. Commemorative volume of the division of particles and fields of the Mexican Phys. Soc., Morelia Michoacán, 6-12 Nov. 2005, Part B., M.A. Pérez, L.F. Urrutia, and L. Villaseñor, eds.(AIP Conference Proc., Melville N.Y. 2006) Vol. 857, pp. 246–257

    Google Scholar 

  • Mielke EW (2008) Einsteinian gravity from BRST quantization of a topological action. Phys Rev D 77(8):084020

    Article  ADS  MathSciNet  Google Scholar 

  • Mielke EW (2009) Topologically modified teleparallelism, passing through the Nieh-Yan functional. Phys Rev D 80(6):067502

    Article  ADS  Google Scholar 

  • Mielke EW (2010) Einsteinian gravity from a spontaneously broken topological BF theory. Phys Lett B 688(4):273–277

    Article  ADS  MathSciNet  Google Scholar 

  • Mielke EW (2011a) Spontaneously broken topological SL(5, \(\mathbb{R}\)) gauge theory with standard gravity emerging. Phys Rev D 83(4):044004

    Google Scholar 

  • Mielke EW (2011b) Weak equivalence principle from a spontaneously broken gauge theory of gravity. Phys Lett B 702(4):187–190

    Article  ADS  MathSciNet  Google Scholar 

  • Mielke EW (2012) Einstein-Weyl gravity from a topological SL(5, \(\mathbb{R}\)) gauge invariant action. Adv Appl Clifford Algebras (Special Volume in memory of Jaime Keller) 22:803–817

    Google Scholar 

  • Mielke EW, Maggiolo AAR (2005) Duality in Yang’s theory of gravity. General Relativ Gravit 37(5):997–1007

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Minkowski P (1977) On the spontaneous origin of Newtons constant. Phys Lett B 71(2):419–421

    Google Scholar 

  • Ne’eman Y (2006) Cosmology, Einstein’s “Mach principle” and the Higgs fields. Int J Mod Phys A 21(13–14):2773–2779

    Google Scholar 

  • Niedermaier M (2010) Gravitational fixed points and asymptotic safety from perturbation theory. Nucl Phys B 833(3):226–270

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Niedermaier M, Reuter M (2006) The asymptotic safety scenario in quantum gravity. Living Rev Relativ 9(5):173

    MATH  Google Scholar 

  • Nieh H (2007) A torsional topological invariant. Int J Mod Phys A 22(29):5237–5244

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Nieh H-T (1982) A spontaneously broken conformal gauge theory of gravitation. Phys Lett A 88(8):388–390

    Article  ADS  Google Scholar 

  • Overduin J, Everitt F, Mester J, Worden P (2009) The science case for STEP. Adv Space Res 43(10):1532–1537

    Article  ADS  Google Scholar 

  • Pagels HR (1984) Gravitational gauge fields and the cosmological constant. Phys Rev D 29(8):1690

    Article  ADS  Google Scholar 

  • Plebański JF (1977) On the separation of Einsteinian substructures. J Math Phys 18(12):2511–2520

    Article  ADS  MATH  Google Scholar 

  • Reuter M, Saueressig F (2011) Fractal space-times under the microscope: a renormalization group view on Monte Carlo data. J High Energy Phys 12:1–27

    MATH  Google Scholar 

  • Reyes R, Mandelbaum R, Seljak U, Baldauf T, Gunn JE, Lombriser L, Smith RE (2010) Confirmation of general relativity on large scales from weak lensing and galaxy velocities. Nature 464(7286):256–258

    Article  ADS  Google Scholar 

  • Schwinger J (1962) Non-Abelian gauge fields. Commutation relations. Phys Rev 125(3):1043

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Sieroka N (2010) Geometrization versus transcendent matter: a systematic historiography of theories of matter following Weyl. B J Philos Sci 61(4):769–802

    Article  Google Scholar 

  • Smalley LL (1986) Discrete Dirac equation on a finite half integer lattice. Il Nuovo Cim A 92: 25

    Google Scholar 

  • Smolin L (2000) Holographic formulation of quantum general relativity. Phys Rev D 61(8):084007

    Article  ADS  MathSciNet  Google Scholar 

  • Sobreiro R, Tomaz A, Otoya VV (2012) de Sitter gauge theories and induced gravities. Eur Phys J C 72(5):1–8

    Article  Google Scholar 

  • Sué M (1991) Involutive systems of differential equations: Einstein’s strength versus Cartan’s degré d’arbitraire. J Math Phys 32(2):392–399

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Sué M, Mielke EW (1989) Strength of the Poincaré gauge field equations in first order formalism. Phys Lett A 139(1):21–26

    Article  ADS  MathSciNet  Google Scholar 

  • ‘t Hooft G (2007) Renormalization and gauge invariance. Prog Theor Phys Suppl 170:56–71

    Google Scholar 

  • Veltman MJ (2000) Nobel lecture: from weak interactions to gravitation. Rev Mod Phys 72(2):341

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Weinberg S (2005) Einstein’s mistakes. Phys Today 58(11):31–35

    Google Scholar 

  • Wex N, Kramer M (2009) The double pulsar system: a unique laboratory for gravity. Class Quantum Gravity 26(7):073001

    Article  ADS  MATH  Google Scholar 

  • Weyl H (1929) Gravitation and the electron. Proc Natl Acad Sci 15(4):323–334

    Article  ADS  MATH  Google Scholar 

  • Weyl H (1931) Geometrie und Physik. Naturwissenschaften 19(3):49–58

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Wilczek F (1998) Riemann-Einstein structure from volume and gauge symmetry. Phys Rev Lett 80(22):4851

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Wise DK (2010) MacDowell-Mansouri gravity and Cartan geometry. Class Quantum Gravity 27(15):155010

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Yang C-N (1974) Integral formalism for gauge fields. Phys Rev Lett 33(7):445–447

    Google Scholar 

  • Zee A (2004) The graviton and the nature of dark energy. Mod Phys Lett A 19(13–16):983–992

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eckehard W. Mielke .

Appendix: Topological Invariants

Appendix: Topological Invariants

Let us recall that the \(\mathfrak {sl}(5,\mathbb {R})\)-valued Chern–Simons term

$$\begin{aligned} \hat{C}:= -{1\over 2}\left( \varGamma _{A}{}^{B}\wedge d\varGamma _{B}{}^{A} - {2\over 3}\varGamma _{A}{}^{B}\wedge \varGamma _{B} {}^{C}\wedge \varGamma _{C}{}^{A}\right) \end{aligned}$$
(13.8.1)

contains a translational CS three-form \(C_\mathrm{TT}\) that gives rise to the parity-violating (Mielke 2009) boundary four-form

$$\begin{aligned} dC_\mathrm{TT} = {1\over {2\ell ^2}} \left( T^{\alpha }\wedge T_\alpha +R_{\alpha \beta }\wedge \vartheta ^\alpha \wedge \vartheta ^\beta \right) \end{aligned}$$
(13.8.2)

of Nieh and Yan (NY) (Nieh 2007). On the other hand, the \(\mathfrak {gl}(4,\mathbb {R})\)-valued Pontryagin four-form

$$\begin{aligned} dC_\mathrm{RR}= -{1\over 2}R_\alpha {}^\beta \wedge R_\beta {}^\alpha \end{aligned}$$
(13.8.3)

is a topological invariant whose variation returns the second Bianchi identity

$$\begin{aligned} D R_\alpha {}^\beta \equiv 0\, , \end{aligned}$$
(13.8.4)

whereas the torsion identity (13.8.2) is based on the first Bianchi identity

$$\begin{aligned} DT^\alpha \equiv R_{\beta }{}^{\alpha }\wedge \vartheta ^\beta \end{aligned}$$
(13.8.5)

in Riemann–Cartan (RC) geometry. In contrast to the metric-free Pontryagin four-form (13.8.3), in the NY term a metric \(g_{\alpha \beta }\) is needed to raise and lower the indices, for instance in \(T_\alpha =g_{\alpha \beta }T^{\beta }\). Moreover, a fundamental length \(\ell \) necessarily enters into (13.8.2) in order to keep all topological invariants dimensionless.

The topological Euler–Poincaré invariant

$$\begin{aligned} \begin{aligned} dC_\mathrm{RR^{(\star )}}&:= \frac{1}{2}\, d \left( \varGamma _{\alpha \beta }\wedge R^{\alpha \beta (\star )} - {1\over 3}\varGamma _\alpha {}^{\beta (\star )}\wedge \varGamma _\beta {}^\gamma \wedge \varGamma _\gamma {}^\alpha \right) \\&\equiv - L_\mathrm{SKY} -2\mathrm{Ric}_{\alpha \beta }\wedge \,^*\mathrm{Ric}^{\alpha \beta } + \frac{1}{2}\mathrm{Ric}_{\alpha }{}^{\alpha }\wedge \,^*\mathrm{Ric}_{\beta }{}^{\beta } \end{aligned} \end{aligned}$$
(13.8.6)

has an equivalent representation in terms of Weyl’s quadratic curvature Lagrangian

$$\begin{aligned} L_\mathrm{SKY}:=-\frac{1}{2}\,R_{\alpha \beta }\wedge \,^* R^{\alpha \beta }, \end{aligned}$$
(13.8.7)

amended by Ricci-squared and curvature scalar-squared terms. The second expression involving the symmetric Ricci tensor, i.e., the zero-form \(\mathrm{Ric}_{\alpha \beta }:= (-1)^\mathrm{sig} \, ^*(R_{(\alpha }{}^\delta \wedge \eta _{\delta \vert \beta )})\), is known as the Gauss-Bonnet identity.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mielke, E.W. (2017). Topological \(\mathrm {SL} (5,\mathbb {R})\) Gauge-Invariant Action. In: Geometrodynamics of Gauge Fields. Mathematical Physics Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-29734-7_13

Download citation

Publish with us

Policies and ethics