Skip to main content

Advanced Detection Technologies

  • Chapter
  • First Online:
Book cover Analytical Methods for Nonproliferation
  • 1901 Accesses

Abstract

Alternative technologies for gamma-ray photon and neutron detectors are presented. First, new scintillator materials are discussed, with some of the underlying physics of the scintillation process in inorganic scintillators. The performance of some new materials such as strontium iodide and some lanthanum compounds are discussed, along with growth techniques for these materials. Both single cystal growth and methods for the manufacture of transparent ceramics are covered. Next, the development of room temperature solid-state detector materials is explored, with some general properties to guide the search for new ternary and quaternary compounds. Next, alternatives to \(^3\)He for neutron detection are discussed, including stilbene and new lithium compounds such as elpasolites. Finally, imaging techniques are explored. These include coded aperture arrays and Compton imaging detectors. The algorithms associated with coded aperture de-convolution are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdul-Jabbar N, Bourret-Courchesne E, Wirth B (2012) Single crystal growth of Ga\(_2\)(Se\(_{1-x}\)Te\(_x\))\(_3\) semiconductors and defect studies via positron annihilation spectroscopy. J Cryst Growth 352(1):31–34. doi:10.1016/j.jcrysgro.2012.02.011. http://www.sciencedirect.com/science/article/pii/S0022024812001261. The proceedings of the 18th American conference on crystal growth and epitaxy

    Google Scholar 

  2. Amman M, Luke P (2000) Three-dimensional position sensing and field shaping in orthogonal-strip germanium gamma-ray detectors. Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 452(1–2):155–166. doi:10.1016/S0168-9002(00)00351-X. http://www.sciencedirect.com/science/article/pii/S016890020000351X

    Google Scholar 

  3. Amman M, Luke P, Boggs S (2007) Amorphous-semiconductor-contact germanium-based detectors for gamma-ray imaging and spectroscopy. Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 579(2):886–890. doi:10.1016/j.nima.2007.05.307. http://www.sciencedirect.com/science/article/pii/S0168900207012004

    Google Scholar 

  4. Anger HO (1958) Scintillation camera. Rev Sci Instrum 29(1):27–3. doi:10.1063/1.1715998. http://scitation.aip.org/content/aip/journal/rsi/29/1/10.1063/1.1715998

    Google Scholar 

  5. Aprile E, Bolotnikov A, Chen D, Mukherjee R (1993) A Monte Carlo analysis of the liquid xenon TPC as gamma-ray telescope. Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 327(1):216–221. doi:10.1016/0168-9002(93)91446-T. http://www.sciencedirect.com/science/article/pii/016890029391446T

    Google Scholar 

  6. Atwood WB, Abdo AA, Ackermann M, Althouse W, Anderson B, Axelsson M, Baldini L, Ballet J, Band DL, Barbiellini G, Bartelt J, Bastieri D, Baughman BM, Bechtol K, Bdrde D, Bellardi F, Bellazzini R, Berenji B, Bignami GF, Bisello D, Bissaldi E, Blandford RD, Bloom ED, Bogart JR, Bonamente E, Bonnell J, Borgland AW, Bouvier A, Bregeon J, Brez A, Brigida M, Bruel P, Burnett TH, Busetto G, Caliandro GA, Cameron RA, Caraveo PA, Carius S, Carlson P, Casandjian JM, Cavazzuti E, Ceccanti M, Cecchi C, Charles E, Chekhtman A, Cheung CC, Chiang J, Chipaux R, Cillis AN, Ciprini S, Claus R, Cohen-Tanugi J, Condamoor S, Conrad J, Corbet R, Corucci L, Costamante L, Cutini S, Davis DS, Decotigny D, DeKlotz M, Dermer CD, de Angelis A, Digel SW, do Couto e Silva E, Drell PS, Dubois R, Dumora D, Edmonds Y, Fabiani D, Farnier C, Favuzzi C, Flath DL, Fleury P, Focke WB, Funk S, Fusco P, Gargano F, Gasparrini D, Gehrels N, Gentit FX, Germani S, Giebels B, Giglietto N, Giommi P, Giordano F, Glanzman T, Godfrey G, Grenier IA, Grondin MH, Grove JE, Guillemot L, Guiriec S, Haller G, Harding AK, Hart PA, Hays E, Healey SE, Hirayama M, Hjalmarsdotter L, Horn R, Hughes RE, Jhannesson G, Johansson G, Johnson AS, Johnson RP, Johnson TJ, Johnson WN, Kamae T, Katagiri H, Kataoka J, Kavelaars A, Kawai N, Kelly H, Kerr M, Klamra W, Kndlseder J, Kocian ML, Komin N, Kuehn F, Kuss M, Landriu D, Latronico L, Lee B, Lee SH, Lemoine-Goumard M, Lionetto AM, Longo F, Loparco F, Lott B, Lovellette MN, Lubrano P, Madejski GM, Makeev A, Marangelli B, Massai MM, Mazziotta MN, McEnery JE, Menon N, Meurer C, Michelson PF, Minuti M, Mirizzi N, Mitthumsiri W, Mizuno T, Moiseev AA, Monte C, Monzani ME, Moretti E, Morselli A, Moskalenko IV, Murgia S, Nakamori T, Nishino S, Nolan PL, Norris JP, Nuss E, Ohno M, Ohsugi T, Omodei N, Orlando E, Ormes JF, Paccagnella A, Paneque D, Panetta JH, Parent D, Pearce M, Pepe M, Perazzo A, Pesce-Rollins M, Picozza P, Pieri L, Pinchera M, Piron F, Porter TA, Poupard L, Rain S, Rando R, Rapposelli E, Razzano M, Reimer A, Reimer O, Reposeur T, Reyes LC, Ritz S, Rochester LS, Rodriguez AY, Romani RW, Roth M, Russell JJ, Ryde F, Sabatini S, Sadrozinski HFW, Sanchez D, Sander A, Sapozhnikov L, Parkinson PMS, Scargle JD, Schalk TL, Scolieri G, Sgr C, Share GH, Shaw M, Shimokawabe T, Shrader C, Sierpowska-Bartosik A, Siskind EJ, Smith DA, Smith PD, Spandre G, Spinelli P, Starck JL, Stephens TE, Strickman MS, Strong AW, Suson DJ, Tajima H, Takahashi H, Takahashi T, Tanaka T, Tenze A, Tether S, Thayer JB, Thayer JG, Thompson DJ, Tibaldo L, Tibolla O, Torres DF, Tosti G, Tramacere A, Turri M, Usher TL, Vilchez N, Vitale V, Wang P, Watters K, Winer BL, Wood KS, Ylinen T, Ziegler M (2009) The large area telescope on the Fermi gamma-ray space telescope mission. Astrophys J 697(2):1071. http://stacks.iop.org/0004-637X/697/i=2/a=1071

  7. Bandstra MS, Bellm EC, Boggs SE, Perez-Becker D, Zoglauer A, Chang HK, Chiu JL, Liang JS, Chang YH, Liu ZK, Hung WC, Huang MHA, Chiang SJ, Run RS, Lin CH, Amman M, Luke PN, Jean P, von Ballmoos P, Wunderer CB (2011) Detection and imaging of the crab nebula with the nuclear compton telescope. Astrophys J 738(1):8. http://stacks.iop.org/0004-637X/738/i=1/a=8

    Google Scholar 

  8. Benson A, Bandstra M, Chivers D, Aucott T, Augarten B, Bates C, Midvidy A, Pavlovsky R, Siegrist J, Vetter K, Yee B (2013) The gamma-ray imaging framework. IEEE Trans Nucl Sci 60(2):528–532. doi:10.1109/TNS.2013.2245342

    Article  ADS  Google Scholar 

  9. Boggs SE, Jean P (2000) Event reconstruction in high resolution compton telescopes. Astron Astrophys Suppl Ser 145(2):311–321. doi:10.1051/aas:2000107. http://aas.aanda.org/articles/aas/abs/2000/14/h2143/h2143.html

    Google Scholar 

  10. Brooks F (1959) A scintillation counter with neutron and gamma-ray discriminators. Nucl Instr Methods 4(3):151–163. doi:10.1016/0029-554X(59)90067-9. http://www.sciencedirect.com/science/article/pii/0029554X59900679

    Google Scholar 

  11. Carini G, Camarda G, Zhong Z, Siddons D, Bolotnikov A, Wright G, Barber B, Arnone C, James R (2005) High-energy x-ray diffraction and topography investigation of cdznte. J Electron Mater 34(6):804–810. doi:10.1007/s11664-005-0024-6

    Google Scholar 

  12. Cherepy N, Payne S, Sturm B, Kuntz J, Seeley Z, Rupert B, Sanner R, Drury O, Hurst T, Fisher S, Groza M, Matei L, Burger A, Hawrami R, Member, Shah K, Boatner L (2010) Comparative gamma spectroscopy with SrI\(_2\)(Eu), GYGAG(Ce) and Bi-loaded plastic scintillators. In: IEEE transactions on nuclear science, IEEE/NSS proceedings 2010

    Google Scholar 

  13. Cherepy NJ, Seeley ZM, Payne SA, Beck PR, Drury OB, ONeal SP, Figueroa KM, Hunter S, Ahle L, Thelin PA, Stefanik T, Kindem J (2013) Development of transparent ceramic Ce-doped gadolinium garnet gamma spectrometers. IEEE Trans Nucl Sci 60(3):2330–2335. doi:10.1109/TNS.2013.2261826. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6520005

    Google Scholar 

  14. Cherepy NJ, Sturm BW, Drury OB, Hurst TA, Sheets SA, Ahle LE, Saw CK, Pearson MA, Payne SA, Burger A, Boatner LA, Ramey JO, van Loef EV, Glodo J, Hawrami R, Higgins WM, Shah KS, Moses WW (2009) SrI\(_2\) scintillator for gamma ray spectroscopy. Proc SPIE 7449:74,490F–74,490F–6. doi:10.1117/12.830016

  15. Dorenbos P (2002) Light output and energy resolution of Ce3+-doped scintillators. Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 486(12):208–213. doi:10.1016/S0168-9002(02)00704-0. http://www.sciencedirect.com/science/article/pii/S0168900202007040. Proceedings of the 6th international conference on inorganic scintillators and their use in scientific and industrial applications

    Google Scholar 

  16. Dziuk G, Boschert S, Schmidt A, Siebert K, Bnsch E, Benz KW, Kaiser T (2003) Simulation of industrial crystal growth by the vertical Bridgman method. In: Jger W, Krebs HJ (eds) Mathematics key technology for the future. Springer, Berlin, pp 315–330. doi:10.1007/978-3-642-55753-8_26

    Google Scholar 

  17. Gillo J (2014) Stable isotope operations: Helium-3. In: 3rd federal workshop on isotope supply and demand (Nov 3, 2014). http://science.energy.gov/~/media/np/pdf/workshops/workshop-on-isotope-federal-supply-and-demand-2014/presentations/Jehanne_Workshop_2014_he3.pdf

  18. Gottesman SR, Fenimore EE (1989) New family of binary arrays for coded aperture imaging. Appl Opt 28:4344–4352. doi:10.1364/AO.28.004344

    Article  ADS  Google Scholar 

  19. Hecht K (1932) Zum mechanismus des lichtelektrischen primärstromes in isolierenden kristallen. Zeitschrift für Physik 77(3-4):235–245. doi:10.1007/BF01338917. http://dx.doi.org/10.1007/BF01338917

  20. Huang GY, Abdul-Jabbar N, Wirth B (2014) Theoretical study of Ga\(_2\)Se3,Ga\(_2\)Te\(_3\) and Ga\(_2\)(Se\(_{1-x}\)Te\(_x\))\(_3\): band-gap engineering. Acta Materialia 71:349–369. doi:10.1016/j.actamat.2014.03.010. http://www.sciencedirect.com/science/article/pii/S1359645414001578

    Google Scholar 

  21. Isaac MP, Hurley D, McDonald R, Norman E, Smith A (1997) A natural calibration source for determining germanium detector efficiencies. Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 397(23):310–316. doi:10.1016/S0168-9002(97)00754-7. http://www.sciencedirect.com/science/article/pii/S0168900297007547

    Google Scholar 

  22. Jenkins D (2015) Novel scintillators and silicon photomultipliers for nuclear physics and applications. J Phys: Conf Ser 620(1):012,001. http://stacks.iop.org/1742-6596/620/i=1/a=012001

    Google Scholar 

  23. Kernan W (2006) Self-activity in lanthanum halides. IEEE Trans Nucl Sci 53(1):395–400. doi:10.1109/TNS.2006.869849

    Article  ADS  Google Scholar 

  24. Kroeger R, Johnson W, Kurfess J, Phlips B, Wulf E (2002) Three-compton telescope: theory, simulations, and performance. IEEE Trans Nucl Sci 49(4):1887–1892. doi:10.1109/TNS.2002.801539

    Article  ADS  Google Scholar 

  25. Lecoq P, Annenkov A, Gektin A, Korzhik M, Pedrini C (2006) Scintillation mechanisms in inorganic scintillators. In: Inorganic scintillators for detector systems, particle acceleration and detection. Springer, Berlin, pp 81–122. doi:10.1007/3-540-27768-4_3

  26. Milbrath B, Runkle R, Hossbach T, Kaye W, Lepel E, McDonald B, Smith L (2005) Characterization of alpha contamination in lanthanum trichloride scintillators using coincidence measurements. Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 547(23):504–510. doi:10.1016/j.nima.2004.11.054. http://www.sciencedirect.com/science/article/pii/S0168900205008909

    Google Scholar 

  27. Oberlack UG, Aprile E, Curioni A, Egorov V, Giboni KL (2000) Compton scattering sequence reconstruction algorithm for the liquid xenon gamma-ray imaging telescope (lxegrit). Proc SPIE 4141:168–177. doi:10.1117/12.407578

  28. Olego DJ, Faurie JP, Sivananthan S, Raccah PM (1985) Optoelectronic properties of Cd\(_{1-{\rm {x}}}\)Zn\(_{{\rm {x}}}\)Te films grown by molecular beam epitaxy on gaas substrates. Appl Phys Lett 47(11):1172–1174. doi:10.1063/1.96316. http://scitation.aip.org/content/aip/journal/apl/47/11/10.1063/1.96316

    Google Scholar 

  29. Owens A, Peacock A (2004) Compound semiconductor radiation detectors. Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 531(12):18–37. doi:10.1016/j.nima.2004.05.071. http://www.sciencedirect.com/science/article/pii/S0168900204010575. Proceedings of the 5th international workshop on radiation imaging detectors

    Google Scholar 

  30. Prokuronov M, Golubev A, Demidov V, Rudskoi I, Smirnov G, Khaldeeva N, Shabalin A, Shubin S (2006) A digital method for pulse-shape discrimination between particles. Instrum Exp Tech 49(2):207–222. doi:10.1134/S0020441206020096

    Google Scholar 

  31. Schlesinger T, Toney J, Yoon H, Lee E, Brunett B, Franks L, James R (2001) Cadmium zinc telluride and its use as a nuclear radiation detector material. Mater Sci Eng: R: Rep 32(45):103–189. doi:10.1016/S0927-796X(01)00027-4. http://www.sciencedirect.com/science/article/pii/S0927796X01000274

    Google Scholar 

  32. Seeley Z, Cherepy N, Payne S (2013) Homogeneity of Gd-based garnet transparent ceramic scintillators for gamma spectroscopy. J Cryst Growth 379:79–83. doi:10.1016/j.jcrysgro.2012.11.042. http://www.sciencedirect.com/science/article/pii/S0022024812008391. Compound semiconductors and scintillators for radiation detection applications: a special tribute to the research of Michael Schieber

    Google Scholar 

  33. Shah K, Glodo J, van Loef E, Higgins W, Hawrami R, Shirwadkar U, Mukhopadhay S (2010) New detectors for gamma and neutron studies. DOE SBIR Phase II presentation. http://science.energy.gov/~/media/np/pdf/sbir%20sttr/presentations/shah_np_gamma_neutron_scintillators_1.pdf

  34. Stonehill L (2012) A new scintillator for neutron and gamma detection: Cs\(_2\)LiYCl\(_6\):Ce\(^{3+}\) (CLYC): overview and selected applications. Los Alamos Lab Tech Rep LA-UR-12-26565:1–41 (Nov 29, 2012). http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-12-26565

  35. Toney J, Schlesinger T, James R (1999) Optimal bandgap variants of cd\(_{1-{\rm {x}}}\)zn\(_{{\rm {x}}}\)te for high-resolution x-ray and gamma-ray spectroscopy. Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 428(1):14–24. doi:10.1016/S0168-9002(98)01575-7. http://www.sciencedirect.com/science/article/pii/S0168900298015757

    Google Scholar 

  36. Tuomisto F (2010) Defect characterization in semiconductors with positron annihilation spectroscopy. In: Dhanaraj G, Byrappa K, Prasad V, Dudley M (eds) Springer handbook of crystal growth. Springer, Berlin, pp 1551–1579. doi:10.1007/978-3-540-74761-1_46

    Google Scholar 

  37. Vo D (2008) Comparison of portable detectors for uranium enrichment measurements. J Radioanal Nucl Chem 276(3):693–698. doi:10.1007/s10967-008-0619-5

    Google Scholar 

  38. Xiang Q, Tian D, Hao F, Chu C, Ding G, Zeng J, Luo F (2014) Self-calibration method for cerium-doped lanthanum bromide scintillator detector in the 0.12.0mev energy range. J Radioanal Nucl Chem 299(3):1439–1445. doi:10.1007/s10967-013-2782-6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward C. Morse .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Morse, E.C. (2016). Advanced Detection Technologies. In: Analytical Methods for Nonproliferation. Advanced Sciences and Technologies for Security Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-29731-6_9

Download citation

Publish with us

Policies and ethics