Skip to main content

The Evolutionary Etiologies of Autism Spectrum and Psychotic Affective Spectrum Disorders

  • Chapter
  • First Online:
Evolutionary Thinking in Medicine

Abstract

Risks of human psychiatric conditions have evolved, and their symptoms represent perturbations to adaptive cognitive and affective systems. Evolutionary considerations are useful in this context because they direct us to the identification of specific human adaptations that become dysregulated in disease, though either underdevelopment or overdevelopment. Autism is thus conceptualized in terms of underdeveloped social cognition, such that the highly elaborated human social brain does not complete its usual developmental trajectory. Psychotic affective conditions, mainly schizophrenia, bipolar disorder, and depression, are, in contrast to autism, conceptualized in terms of dysfunctionally overdeveloped aspects of social cognition, such that they are caused by opposite neural system alterations to those producing autism. The hypothesis that autism and psychotic affective conditions represent diametric disorders is supported by a wide range of convergent evidence from genetics, development, neuroscience, psychology, and cognitive science. The diametric model provides for reciprocal illumination of the causes of these conditions and makes specific recommendations for research strategies and the development of novel treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nesse RM, Stein DJ (2012) Towards a genuinely medical model for psychiatric nosology. BMC Med 10:5. doi:10.1186/1741-7015-10-5

    Article  PubMed  PubMed Central  Google Scholar 

  2. Crespi B (2011) One hundred years of insanity: genomic, psychological and evolutionary models of autism in relation to schizophrenia. In: Ritsner M (ed) Handbook of schizophrenia-spectrum disorders, vol I. Springer, Netherlands, pp 163–185

    Chapter  Google Scholar 

  3. Nesse RM (2004) Natural selection and the elusiveness of happiness. Philos Trans R Soc Lond B Biol Sci 359(1449):1333–1347

    Article  PubMed  PubMed Central  Google Scholar 

  4. Malhotra D, Sebat J (2012) CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell 148(6):1223–1241. doi:10.1016/j.cell.2012.02.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Escudero I, Johnstone M (2014) Genetics of schizophrenia. Curr Psychiatry Rep 16(11):502. doi:10.1007/s11920-014-0502-8

    Article  PubMed  Google Scholar 

  6. Plun-Favreau H, Lewis PA, Hardy J et al (2010) Cancer and neurodegeneration: between the devil and the deep blue sea. PLoS Genet 6(12):e1001257. doi:10.1371/journal.pgen.1001257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Power RA, Kyaga S, Uher R et al (2013) Fecundity of patients with schizophrenia, autism, bipolar disorder, depression, anorexia nervosa, or substance abuse vs their unaffected siblings. JAMA Psychiatry 70(1):22–30. doi:10.1001/jamapsychiatry.2013.268

    Article  PubMed  Google Scholar 

  8. Singh S, Kumar A, Agarwal S et al (2014) Genetic insight of schizophrenia: past and future perspectives. Gene 535(2):97–100. doi:10.1016/j.gene.2013.09.110

    Article  CAS  PubMed  Google Scholar 

  9. Bourque F, van der Ven E, Fusar-Poli P et al (2012) Immigration, social environment and onset of psychotic disorders. Curr Pharm Des 18(4):518–526

    Article  CAS  PubMed  Google Scholar 

  10. Stein DJ (2013) What is a mental disorder? A perspective from cognitive-affective science. Can J Psychiatry 58(12):656–662

    PubMed  Google Scholar 

  11. Curtis VA (2014) Infection-avoidance behaviour in humans and other animals. Trends Immunol 35(10):457–464. doi:10.1016/j.it.2014.08.006

    Article  CAS  PubMed  Google Scholar 

  12. Trull TJ, Widiger TA (2013) Dimensional models of personality: the five-factor model and the DSM-5. Dialogues Clin Neurosci 15(2):135–146

    PubMed  PubMed Central  Google Scholar 

  13. Crespi B (2008) Language unbound: genomic conflict and psychosis in the origin of modern humans. In: Hughes D, D’Ettorre P (eds) Sociobiology of communication: an interdisciplinary perspective. Oxford Universtiy Press, Oxford, pp 225–248

    Chapter  Google Scholar 

  14. Crespi B, Leach E (2015) The evolutionary biology of human neurodevelopment: evo-neuro-devo comes of age. In: Boughner J, Rolian C (eds) Evolutionary developmental anthropology. Wiley, New York (in press)

    Google Scholar 

  15. Johnson W, Bouchard TJ Jr (2007) Sex differences in mental abilities: g masks the dimensions on which they lie. Intelligence 35:23–39

    Article  Google Scholar 

  16. Nettle D (2007) Empathizing and systemizing: what are they, and what do they contribute to our understanding of psychological sex differences? Br J Psychol 98:237–255

    Article  PubMed  Google Scholar 

  17. Liljenström H (2003) Neural stability and flexibility: a computational approach. Neuropsychopharmacology 28(Suppl 1):S64–S73

    Article  PubMed  Google Scholar 

  18. Jack AI, Dawson AJ, Begany KL et al (2013) fMRI reveals reciprocal inhibition between social and physical cognitive domains. Neuroimage 66C:385–401

    Article  Google Scholar 

  19. Kravariti E, Toulopoulou T, Mapua-Filbey F et al (2006) Intellectual asymmetry and genetic liability in first-degree relatives of probands with schizophrenia. Br J Psychiatry 188:186–187

    Article  PubMed  Google Scholar 

  20. Brosnan M, Ashwin C, Walker I et al (2010) Can an ‘Extreme Female Brain’ be characterised in terms of psychosis? Pers Indiv Diff 49(7):738–742

    Article  Google Scholar 

  21. Dinsdale N, Crespi BJ (2013) The borderline empathy paradox: evidence and conceptual models for empathic enhancements in borderline personality disorder. J Pers Disord 27(2):172–195

    Article  PubMed  Google Scholar 

  22. Crespi B, Foster K, Úbeda F (2014) First principles of Hamiltonian medicine. Philos Trans R Soc Lond B Biol Sci 369:20130366

    Article  PubMed  PubMed Central  Google Scholar 

  23. Crespi B (2010) The strategies of the genes: genomic conflicts, attachment theory and development of the social brain. In: Petronis A, Mill J (eds) Brain, behaviour and epigenetics. Springer, Berlin, pp 143–167

    Google Scholar 

  24. Crespi B, Badcock C (2008) Psychosis and autism as diametrical disorders of the social brain. Behav Brain Sci 31(3):241–261; discussion 261–320

    Google Scholar 

  25. Haig D (2014) Coadaptation and conflict, misconception and muddle, in the evolution of genomic imprinting. Heredity (Edinb) 113(2):96–103

    Article  CAS  Google Scholar 

  26. Haig D, Ubeda F, Patten MM (2014) Specialists and generalists: the sexual ecology of the genome. Cold Spring Harb Perspect Biol 6(9):a017525. doi:10.1101/cshperspect.a017525, pii:a017525

    Google Scholar 

  27. Soni S, Whittington J, Holland AJ et al (2008) The phenomenology and diagnosis of psychiatric illness in people with Prader-Willi syndrome. Psychol Med 38(10):1505–1514

    Article  CAS  PubMed  Google Scholar 

  28. Hirstein W, Iversen P, Ramachandran VS (2001) Autonomic responses of autistic children to people and objects. Proc Biol Sci 268(1479):1883–1888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Russo DA, Stochl J, Painter M et al (2014) Trauma history characteristics associated with mental states at clinical high risk for psychosis. Psychiatry Res. doi:10.1016/j.psychres.2014.08.028, pii:S0165-1781(14)00725-2

    Google Scholar 

  30. Kapur S (2003) Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am J Psychiatry 160(1):13–23

    Article  PubMed  Google Scholar 

  31. Nesse RM, Jackson ED (2011) Evolutionary foundations for psychiatric diagnosis: making DSM-V valid. In: De Block A, Adriaens P (eds) Maladapting minds: philosophy, psychiatry, and evolutionary theory. Oxford University Press, Oxford, pp 167–191

    Google Scholar 

  32. Brunsdon VE, Happé F (2014) Exploring the ‘fractionation’ of autism at the cognitive level. Autism 18(1):17–30. doi:10.1177/1362361313499456

    Article  PubMed  Google Scholar 

  33. Baron-Cohen S, Lombardo MV, Auyeung B et al (2011) Why are autism spectrum conditions more prevalent in males? PLoS Biol 9(6):e1001081. doi:10.1371/journal.pbio.1001081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Heil KM, Schaaf CP (2013) The genetics of Autism Spectrum Disorders–a guide for clinicians. Curr Psychiatry Rep 15(1):334. doi:10.1007/s11920-012-0334-3

    Article  PubMed  Google Scholar 

  35. Woodard CR, Van Reet J (2011) Object identification and imagination: an alternative to the meta-representational explanation of autism. J Autism Dev Disord 41(2):213–226

    Article  PubMed  Google Scholar 

  36. Crespi B (2013) Developmental heterochrony and the evolution of autistic perception, cognition and behaviour. BMC Med 11:119

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ploog BO (2010) Stimulus overselectivity four decades later: a review of the literature and its implications for current research in autism spectrum disorder. J Autism Dev Disord 40(11):1332–1349

    Article  PubMed  Google Scholar 

  38. Frith U (2012) Why we need cognitive explanations of autism. Q J Exp Psychol (Hove) 65(11):2073–2092. doi:10.1080/17470218.2012.697178

    Article  Google Scholar 

  39. Mottron L, Dawson M, Soulières I et al (2006) Enhanced perceptual functioning in autism: an update, and eight principles of autistic perception. J Autism Dev Disord 36(1):27–43

    Article  PubMed  Google Scholar 

  40. Rutter M (1972) Childhood schizophrenia reconsidered. J Autism Dev Disord 2:315–337

    Article  CAS  Google Scholar 

  41. Wing L, Gould J (1979) Severe impairments of social interaction and associated abnormalities in children: epidemiology and classification. J Autism Dev Disord 9:11–29

    Article  CAS  PubMed  Google Scholar 

  42. Doherty JL, Owen MJ (2014) Genomic insights into the overlap between psychiatric disorders: implications for research and clinical practice. Genome Med 6(4):29. doi:10.1186/gm546

    Article  PubMed  PubMed Central  Google Scholar 

  43. Winton-Brown TT, Fusar-Poli P, Ungless MA et al (2014) Dopaminergic basis of salience dysregulation in psychosis. Trends Neurosci 37(2):85–94. doi:10.1016/j.tins.2013.11.003

    Article  CAS  PubMed  Google Scholar 

  44. Cook J, Barbalat G, Blakemore SJ (2012) Top-down modulation of the perception of other people in schizophrenia and autism. Front Hum Neurosci 6:175. doi:10.3389/fnhum.2012.00175

    Article  PubMed  PubMed Central  Google Scholar 

  45. Howes OD, Murray RM (2014) Schizophrenia: an integrated sociodevelopmental-cognitive model. Lancet 383(9929):1677–1687. doi:10.1016/S0140-6736(13)62036-X

    Article  PubMed  PubMed Central  Google Scholar 

  46. Nesse RM, Ellsworth PC (2009) Evolution, emotions, and emotional disorders. Am Psychol 64(2):129–139

    Article  PubMed  Google Scholar 

  47. Keller MC, Nesse RM (2005) Is low mood an adaptation? Evidence for subtypes with symptoms that match precipitants. J Affect Disord 86(1):27–35

    Article  PubMed  Google Scholar 

  48. Johnson SL (2005) Mania and dysregulation in goal pursuit: a review. Clin Psychol Rev 25(2):241–262

    Article  PubMed  PubMed Central  Google Scholar 

  49. Johnson SL, Fulford D, Carver CS (2012) The double-edged sword of goal engagement: consequences of goal pursuit in bipolar disorder. Clin Psychol Psychother 19(4):352–362

    Article  PubMed  PubMed Central  Google Scholar 

  50. Johnson SL, Carver CS (2012) The dominance behavioural system and manic temperament: motivation for dominance, self-perceptions of power, and socially dominant behaviours. J Affect Disord 142(1–3):275–282

    Article  PubMed  PubMed Central  Google Scholar 

  51. Johnson SL, Leedom LJ, Muhtadie L (2012) The dominance behavioural system and psychopathology: evidence from self-report, observational, and biological studies. Psychol Bull 138(4):692–743. doi:10.1037/a0027503

    Article  PubMed  PubMed Central  Google Scholar 

  52. Coryell W, Endicott J, Keller M et al (1989) Bipolar affective disorder and high achievement: a familial association. Am J Psychiatry 146(8):983–988

    Article  CAS  PubMed  Google Scholar 

  53. Higier RG, Jimenez AM, Hultman CM et al (2014) Enhanced neurocognitive functioning and positive temperament in twins discordant for bipolar disorder. Am J Psychiatry. doi:10.1176/appi.ajp.2014.13121683

    PubMed  Google Scholar 

  54. Nettle D (2001) Strong imagination: madness, creativity and human nature. Oxford University Press, Oxford

    Google Scholar 

  55. Nettle D (2006) Schizotypy and mental health amongst poets, visual artists, and mathematicians. J Res Pers 40(6):876–890

    Article  Google Scholar 

  56. Burns JK (2004) An evolutionary theory of schizophrenia: cortical connectivity, metarepresentation, and the social brain. Behav Brain Sci 27(6):831–855; discussion 855–885

    Google Scholar 

  57. Simeonova DI, Chang KD, Strong C et al (2005) Creativity in familial bipolar disorder. J Psychiatr Res 39(6):623–631

    Article  PubMed  Google Scholar 

  58. Carson SH (2011) Creativity and psychopathology: a shared vulnerability model. Can J Psychiatry 56(3):144–153

    PubMed  Google Scholar 

  59. Bilder RM, Knudsen KS (2014) Creative cognition and systems biology on the edge of chaos. Front Psychol 5:1104. doi:10.3389/fpsyg.2014.01104

    Article  PubMed  PubMed Central  Google Scholar 

  60. Walker CM, Gopnik A (2013) Causality and imagination. In: Taylor M (ed) The development of imagination. Oxford University Press, New York, pp 342–358

    Google Scholar 

  61. Kanner L (1965) Infantile autism and the schizophrenias. Behav Sci 10(4):412–420

    Article  CAS  PubMed  Google Scholar 

  62. Crespi B, Stead P, Elliot M (2010) Comparative genomics of autism and schizophrenia. Proc Natl Acad Sci USA 107(Suppl 1):1736–1741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Crespi B, Crofts HJ (2012) Association testing of copy number variants in schizophrenia and autism spectrum disorders. J Neurodev Disord 4(1):15. doi:10.1186/1866-1955-4-15

    Article  PubMed  PubMed Central  Google Scholar 

  64. Byars SG, Stearns SC, Boomsma JJ (2014) Opposite risk patterns for autism and schizophrenia are associated with normal variation in birth size: phenotypic support for hypothesized diametric gene-dosage effects. Proc Biol Sci 281(1794):20140604

    Google Scholar 

  65. van Os J (2009) ‘Salience syndrome’ replaces ‘schizophrenia’ in DSM-V and ICD-11: psychiatry’s evidence-based entry into the 21st century? Acta Psychiatr Scand 120(5):363–372. doi:10.1111/j.1600-0447.2009.01456.x

    Article  PubMed  Google Scholar 

  66. Happé F, Frith U (2006) The weak coherence account: detail-focused cognitive style in autism spectrum disorders. J Autism Dev Disord 36(1):5–25

    Article  PubMed  Google Scholar 

  67. Markram K, Markram H (2010) The intense world theory—a unifying theory of the neurobiology of autism. Front Hum Neurosci 4:224

    Article  PubMed  PubMed Central  Google Scholar 

  68. Haddad PM, Das A, Ashfaq M et al (2009) A review of valproate in psychiatric practice. Expert Opin Drug Metab Toxicol 5(5):539–551. doi:10.1517/17425250902911455

    Article  CAS  PubMed  Google Scholar 

  69. Lozano R, Hare EB, Hagerman RJ (2014) Modulation of the GABAergic pathway for the treatment of fragile X syndrome. Neuropsychiatr Dis Treat 10:1769–1779

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Matosin N, Newell KA (2013) Metabotropic glutamate receptor 5 in the pathology and treatment of schizophrenia. Neurosci Biobehav Rev 37(3):256–268

    Article  CAS  PubMed  Google Scholar 

  71. Rees E, Walters JT, Georgieva L et al (2014) Analysis of copy number variations at 15 schizophrenia-associated loci. Br J Psychiatry 204(2):108–114

    Article  PubMed  PubMed Central  Google Scholar 

  72. Rees E, Kirov G, Sanders A et al (2014) Evidence that duplications of 22q11.2 protect against schizophrenia. Mol Psychiatry 19(1):37–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Brunetti-Pierri N, Berg JS, Scaglia F et al (2008) Recurrent reciprocal 1q21.1 deletions and duplications associated with microcephaly or macrocephaly and developmental and behavioural abnormalities. Nat Genet 40(12):1466–1471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Qureshi AY, Mueller S, Snyder AZ et al (2014) Opposing brain differences in 16p11.2 deletion and duplication carriers. J Neurosci 34(34):11199–11211. doi:10.1523/JNEUROSCI.1366-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chaste P, Sanders SJ, Mohan KN et al (2014) Modest impact on risk for autism spectrum disorder of rare copy number variants at 15q11.2, specifically breakpoints 1 to 2. Autism Res 7(3):355–362. doi:10.1002/aur.1378

    Article  PubMed  Google Scholar 

  76. Pathania M, Davenport EC, Muir J et al (2014) The autism and schizophrenia associated gene CYFIP1 is critical for the maintenance of dendritic complexity and the stabilization of mature spines. Transl Psychiatry 4:e374. doi:10.1038/tp.2014.16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Courchesne E, Mouton PR, Calhoun ME et al (2011) Neuron number and size in prefrontal cortex of children with autism. JAMA 306(18):2001–2010

    Article  CAS  PubMed  Google Scholar 

  78. Baribeau DA, Anagnostou E (2013) A comparison of neuroimaging findings in childhood onset schizophrenia and autism spectrum disorder: a review of the literature. Front Psychiatry 4:175. doi:10.3389/fpsyt.2013.00175

    Article  PubMed  PubMed Central  Google Scholar 

  79. Haijma SV, Van Haren N, Cahn W et al (2013) Brain volumes in schizophrenia: a meta-analysis in over 18,000 subjects. Schizophr Bull 39(5):1129–1138. doi:10.1093/schbul/sbs118

    Article  PubMed  PubMed Central  Google Scholar 

  80. Hobson RP, Bishop M (2003) The pathogenesis of autism: insights from congenital blindness. Philos Trans R Soc Lond B Biol Sci 358(1430):335–344

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ek U, Fernell E, Jacobson L (2005) Cognitive and behavioural characteristics in blind children with bilateral optic nerve hypoplasia. Acta Paediatr 94(10):1421–1426

    Article  PubMed  Google Scholar 

  82. Landgraf S, Osterheider M (2013) To see or not to see: that is the question. The “Protection-Against-Schizophrenia” (PaSZ) model: evidence from congenital blindness and visuo-cognitive aberrations. Front Psychol 4:352

    Google Scholar 

  83. Silverstein SM, Wang Y, Keane BP (2013) Cognitive and neuroplasticity mechanisms by which congenital or early blindness may confer a protective effect against schizophrenia. Front Psychol 3:624

    Article  PubMed  PubMed Central  Google Scholar 

  84. Brown WA, Cammuso K, Sachs H et al (2003) Autism-related language, personality, and cognition in people with absolute pitch: results of a preliminary study. J Autism Dev Disord 33(2):163–167

    Article  PubMed  Google Scholar 

  85. Mottron L, Bouvet L, Bonnel A et al (2013) Veridical mapping in the development of exceptional autistic abilities. Neurosci Biobehav Rev 37(2):209–228

    Article  PubMed  Google Scholar 

  86. Heaton P, Hudry K, Ludlow A et al (2008) Superior discrimination of speech picth and its relationship to verbal ability in autism spectrum disorders. Cogn Neuropsychol 25:771–782

    Article  PubMed  Google Scholar 

  87. Heaton P, Williams K, Cummins O et al (2008) Autism and pitch processing splinter skills: a group and subgroup analysis. Autism 12(2):203–219

    Article  PubMed  Google Scholar 

  88. Dohn A, Garza-Villarreal EA, Heaton P et al (2012) Do musicians with perfect pitch have more autism traits than musicians without perfect pitch? An empirical study. PloS One 7(5):e37961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Falter CM, Braeutigam S, Nathan R et al (2013) Enhanced access to early visual processing of perceptual simultaneity in autism spectrum disorders. J Autism Dev Disord 43(8):1857–1866. doi:10.1007/s10803-012-1735-1

    Article  PubMed  Google Scholar 

  90. Tavassoli T, Miller LJ, Schoen SA et al (2014) Sensory over-responsivity in adults with autism spectrum conditions. Autism 18(4):428–432

    Article  PubMed  Google Scholar 

  91. Bates TC (2005) The panmodal sensory imprecision hypothesis of schizophrenia: reduced auditory precision in schizotypy. Pers Indiv Diff 38(2):437–449

    Article  Google Scholar 

  92. Leitman DI, Foxe JJ, Butler PD et al (2005) Sensory contributions to impaired prosodic processing in schizophrenia. Biol Psychiatry 58(1):56–61

    Article  PubMed  Google Scholar 

  93. Leitman DI, Sehatpour P, Higgins BA et al (2010) Sensory deficits and distributed hierarchical dysfunction in schizophrenia. Am J Psychiatry 167(7):818–827

    Article  PubMed  Google Scholar 

  94. Force RB, Venables NC, Sponheim SR (2008) An auditory processing abnormality specific to liability for schizophrenia. Schizophr Res 103(1):298–310

    Article  PubMed  Google Scholar 

  95. Javitt DC (2009) Sensory processing in schizophrenia: neither simple nor intact. Schizophr Bull 35(6):1059–1064

    Article  PubMed  PubMed Central  Google Scholar 

  96. Javitt DC (2009) When doors of perception close: bottom-up models of disrupted cognition in schizophrenia. Annu Rev Clin Psychol 5:249–275

    Article  PubMed  PubMed Central  Google Scholar 

  97. Mason OJ, Brady F (2009) The psychotomimetic effects of short-term sensory deprivation. J Nerv Ment Dis 197(10):783–785. doi:10.1097/NMD.0b013e3181b9760b

    Article  PubMed  Google Scholar 

  98. Daniel C, Lovatt A, Mason OJ (2014) Psychotic-like experiences and their cognitive appraisal under short-term sensory deprivation. Front Psychiatry 5:106. doi:10.3389/fpsyt.2014.00106

    Article  PubMed  PubMed Central  Google Scholar 

  99. Kohl S, Wolters C, Gruendler TO et al (2014) Prepulse inhibition of the acoustic startle reflex in high functioning autism. PLoS One 9(3):e92372. doi:10.1371/journal.pone.0092372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Madsen GF, Bilenberg N, Cantio C et al (2014) Increased prepulse inhibition and sensitization of the startle reflex in autistic children. Autism Res 7(1):94–103. doi:10.1002/aur.1337

    Article  PubMed  Google Scholar 

  101. Swerdlow NR, Light GA, Sprock J et al (2014) Deficient prepulse inhibition in schizophrenia detected by the multi-site COGS. Schizophr Res 152(2–3):503–512

    Article  PubMed  PubMed Central  Google Scholar 

  102. Orekhova EV, Stroganova TA (2014) Arousal and attention re-orienting in autism spectrum disorders: evidence from auditory event-related potentials. Front Hum Neurosci 8:34

    Article  PubMed  PubMed Central  Google Scholar 

  103. Nagai T, Tada M, Kirihara K et al (2013) Mismatch negativity as a “translatable” brain marker toward early intervention for psychosis: a review. Front Psychiatry 4:115

    Article  PubMed  PubMed Central  Google Scholar 

  104. Todd J, Harms L, Schall U et al (2013) Mismatch negativity: translating the potential. Front Psychiatry 4:171

    Article  PubMed  PubMed Central  Google Scholar 

  105. Oberman LM, Hubbard EM, McCleery JP et al (2005) EEG evidence for mirror neuron dysfunction in autism spectrum disorders. Brain Res Cogn Brain Res 24(2):190–198

    Article  PubMed  Google Scholar 

  106. Kana RK, Wadsworth HM, Travers BG (2011) A systems level analysis of the mirror neuron hypothesis and imitation impairments in autism spectrum disorders. Neurosci Biobehav Rev 35(3):894–902. doi:10.1016/j.neubiorev.2010.10.007

    Article  PubMed  Google Scholar 

  107. McCormick LM, Brumm MC, Beadle JN et al (2012) Mirror neuron function, psychosis, and empathy in schizophrenia. Psychiatry Res 201(3):233–239. doi:10.1016/j.pscychresns.2012.01.004

    Article  PubMed  PubMed Central  Google Scholar 

  108. Mehta UM, Thirthalli J, Basavaraju R et al (2014) Reduced mirror neuron activity in schizophrenia and its association with theory of mind deficits: evidence from a transcranial magnetic stimulation study. Schizophr Bull 40(5):1083–1094. doi:10.1093/schbul/sbt155

    Article  PubMed  PubMed Central  Google Scholar 

  109. Kennedy DP, Redcay E, Courchesne E (2006) Failing to deactivate: resting functional abnormalities in autism. Proc Natl Acad Sci USA 103:8275–8280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. In: Kingstone A, Miller MB (eds) The year in cognitive neuroscience. Ann NY Acad Sci, New York, pp 1–38. doi:10.1196/annals.1440.011

    Google Scholar 

  111. Iacoboni M (2006) Failure to deactivate in autism: the coconstitution of self and other. Trends Cogn Sci 10:431–433

    Article  PubMed  Google Scholar 

  112. Kennedy DP, Courchesne E (2008) Functional abnormalities of the default network during self- and other-reflection in autism. Soc Cogn Affect Neurosci 3(2):177–190

    Article  PubMed  PubMed Central  Google Scholar 

  113. Landin-Romero R, McKenna PJ, Salgado-Pineda P et al (2014) Failure of deactivation in the default mode network: a trait marker for schizophrenia? Psychol Med 21:1–11

    Google Scholar 

  114. Immordino-Yang MH, Christodoulou JA, Singh V (2012) Rest is not idleness implications of the brain’s default mode for human development and education. Perspect Psychol Sci 7(4):352–364

    Article  PubMed  Google Scholar 

  115. von dem Hagen EA, Stoyanova RS, Baron-Cohen S et al (2013) Reduced functional connectivity within and between ‘social’ resting state networks in autism spectrum conditions. Soc Cogn Affect Neurosci 8(6):694–701

    Article  Google Scholar 

  116. Jung M, Kosaka H, Saito DN et al (2014) Default mode network in young male adults with autism spectrum disorder: relationship with autism spectrum traits. Mol Autism 5:35

    Article  PubMed  PubMed Central  Google Scholar 

  117. Whitfield-Gabrieli S, Thermenos HW, Milanovic S et al (2009) Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proc Natl Acad Sci USA 106(4):1279–1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tang J, Liao Y, Song M et al (2013) Aberrant default mode functional connectivity in early onset schizophrenia. PLoS One 8(7):e71061. doi:10.1371/journal.pone.0071061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Li M, Deng W, He Z, Wang Q, Huang C, Jiang L, Gong Q, Ziedonis DM, King JA, Ma X, Zhang N, Li T (2015) A splitting brain: Imbalanced neural networks in schizophrenia. Psychiatry Res 232(2):145–153. doi:10.1016/j.pscychresns.2015.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  120. Broyd SJ, Demanuele C, Debener S et al (2009) Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci Biobehav Rev 33(3):279–296. doi:10.1016/j.neubiorev.2008.09.002

    Article  PubMed  Google Scholar 

  121. Karbasforoushan H, Woodward ND (2012) Resting-state networks in schizophrenia. Curr Top Med Chem 12(21):2404–2414

    Article  CAS  PubMed  Google Scholar 

  122. Lombardo MV, Chakrabarti B, Bullmore ET et al (2011) Specialization of right temporo-parietal junction for mentalizing and its relation to social impairments in autism. Neuroimage 56(3):1832–1838

    Article  PubMed  Google Scholar 

  123. Kana RK, Libero LE, Hu CP et al (2014) Functional brain networks and white matter underlying theory-of-mind in autism. Soc Cogn Affect Neurosci 9(1):98–105

    Article  PubMed  PubMed Central  Google Scholar 

  124. Wible CG (2012) Hippocampal temporal-parietal junction interaction in the production of psychotic symptoms: a framework for understanding the schizophrenic syndrome. Front Hum Neurosci 6:180

    Article  PubMed  PubMed Central  Google Scholar 

  125. Chevallier C, Kohls G, Troiani V et al (2012) The social motivation theory of autism. Trends Cogn Sci 16(4):231–239

    Article  PubMed  PubMed Central  Google Scholar 

  126. Baron-Cohen S (2010) Empathizing, systemizing, and the extreme male brain theory of autism. Prog Brain Res 186:167–175. doi:10.1016/B978-0-444-53630-3.00011-7

    Article  PubMed  Google Scholar 

  127. Harkness KL, Washburn D, Theriault JE et al (2011) Maternal history of depression is associated with enhanced theory of mind in depressed and nondepressed adult women. Psychiatry Res 189(1):91–96

    Article  PubMed  Google Scholar 

  128. Baez S, Herrera E, Villarin L et al (2013) Contextual social cognition impairments in schizophrenia and bipolar disorder. PLoS One 8(3):e57664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Konstantakopoulos G, Oulis P, Ploumpidis D et al (2014) Self-rated and performance-based empathy in schizophrenia: the impact of cognitive deficits. Soc Neurosci 9(6):590–600

    PubMed  Google Scholar 

  130. Kasari C, Chamberlain B, Bauminger N (2001) Social emotions and social relationships: can children with autism compensate? In: Burack JA, Charman T, Yirmiya N, Zelazo PR (eds) The development of autism: perspectives from theory and research. Lawrence Erlbaum Associates Publishers, Mahwah NJ USA, pp 309–323

    Google Scholar 

  131. Kim S, Thibodeau R, Jorgensen RS (2011) Shame, guilt, and depressive symptoms: a meta-analytic review. Psychol Bull 137(1):68–96. doi:10.1037/a0021466

    Article  PubMed  Google Scholar 

  132. Swettenham J, Remington A, Murphy P et al (2014) Seeing the unseen: autism involves reduced susceptibility to inattentional blindness. Neuropsychology 28(4):563–570. doi:10.1037/neu0000042

    Article  PubMed  Google Scholar 

  133. Hanslmayr S, Backes H, Straub S et al (2012) Enhanced resting-state oscillations in schizophrenia are associated with decreased synchronization during inattentional blindness. Hum Brain Mapp 34(9):2266–2275. doi:10.1002/hbm.22064

    Article  PubMed  Google Scholar 

  134. Reed P, McCarthy J (2012) Cross-modal attention-switching is impaired in autism spectrum disorders. J Autism Dev Disord 42(6):947–953. doi:10.1007/s10803-011-1324-8

    Article  PubMed  Google Scholar 

  135. Morris R, Griffiths O, Le Pelley ME et al (2013) Attention to irrelevant cues is related to positive symptoms in schizophrenia. Schizophr Bull 39(3):575–582. doi:10.1093/schbul/sbr192

    Article  PubMed  PubMed Central  Google Scholar 

  136. Granger KT, Prados J, Young AM (2012) Disruption of overshadowing and latent inhibition in high schizotypy individuals. Behav Brain Res 233(1):201–208. doi:10.1016/j.bbr.2012.05.003

    Article  CAS  PubMed  Google Scholar 

  137. Adams NC, Jarrold C (2009) Inhibition and the validity of the Stroop task for children with autism. J Autism Dev Disord 39(8):1112–1121

    Article  PubMed  Google Scholar 

  138. Westerhausen R, Kompus K, Hugdahl K (2011) Impaired cognitive inhibition in schizophrenia: a meta-analysis of the Stroop interference effect. Schizophr Res 133(1–3):172–181. doi:10.1016/j.schres.2011.08.025

    Article  PubMed  Google Scholar 

  139. South M, Chamberlain PD, Wigham S, Newton T, Le Couteur A, McConachie H, Gray L, Freeston M, Parr J, Kirwan CB, Rodgers J (2014) Enhanced decision making and risk avoidance in high-functioning autism spectrum disorder. Neuropsychology 28(2):222–228

    Article  PubMed  Google Scholar 

  140. Adida M, Maurel M, Kaladjian A, Fakra E, Lazerges P, Da Fonseca D, Belzeaux R, Cermolacce M, Azorin JM (2011) Decision-making and schizophrenia. Encephale 37(Suppl 2):S110–S116

    Article  PubMed  Google Scholar 

  141. Cascio CJ, Foss-Feig JH, Burnette CP et al (2012) The rubber hand illusion in children with autism spectrum disorders: delayed influence of combined tactile and visual input on proprioception. Autism 16(4):406–419. doi:10.1177/1362361311430404

    Article  PubMed  PubMed Central  Google Scholar 

  142. Paton B, Hohwy J, Enticott PG (2012) The rubber hand illusion reveals proprioceptive and sensorimotor differences in autism spectrum disorders. J Autism Dev Disord 42(9):1870–1883

    Article  PubMed  Google Scholar 

  143. Palmer CJ, Paton B, Hohwy J et al (2013) Movement under uncertainty: the effects of the rubber-hand illusion vary along the nonclinical autism spectrum. Neuropsychologia 51(10):1942–1951

    Article  PubMed  Google Scholar 

  144. Park S, Nasrallah HA (2014) The varieties of anomalous self experiences in schizophrenia: splitting of the mind at a crossroad. Schizophr Res 152(1):1–4. doi:10.1016/j.schres.2013.11.036

    Article  PubMed  Google Scholar 

  145. Chance SA (2014) The cortical microstructural basis of lateralized cognition: a review. Front Psychol 5:820

    Article  PubMed  PubMed Central  Google Scholar 

  146. Beversdorf DQ, Smith BW, Crucian GP et al (2000) Increased discrimination of “false memories” in autism spectrum disorder. Proc Natl Acad Sci USA 97(15):8734–8737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Hillier A, Campbell H, Keillor J et al (2007) Decreased false memory for visually presented shapes and symbols among adults on the autism spectrum. J Clin Exp Neuropsychol 29(6):610–616

    Article  PubMed  Google Scholar 

  148. Corlett PR, Simons JS, Pigott JS et al (2009) Illusions and delusions: relating experimentally-induced false memories to anomalous experiences and ideas. Front Behav Neurosci 3:53. doi:10.3389/neuro.08.053.2009

    Article  PubMed  PubMed Central  Google Scholar 

  149. Kanemoto M, Asai T, Sugimori E et al (2013) External misattribution of internal thoughts and proneness to auditory hallucinations: the effect of emotional valence in the Deese-Roediger-McDermott paradigm. Front Hum Neurosci 7:351. doi:10.3389/fnhum.2013.00351

    Article  PubMed  PubMed Central  Google Scholar 

  150. Grant P, Balser M, Munk AJ et al (2014) A false-positive detection bias as a function of state and trait schizotypy in interaction with intelligence. Front Psychiatry 5:135

    Article  PubMed  PubMed Central  Google Scholar 

  151. Faust M, Kenett YN (2014) Rigidity, chaos and integration: hemispheric interaction and individual differences in metaphor comprehension. Front Hum Neurosci 8:511

    Article  PubMed  PubMed Central  Google Scholar 

  152. Kercood S, Grskovic JA, Banda D et al (2014) Working memory and autism: a review of the literature. Res Autism Spectrum Dis 8(10):1316–1332

    Article  Google Scholar 

  153. Ruthsatz J, Urbach JB (2012) Child prodigy: a novel cognitive profile places elevated general intelligence, exceptional working memory and attention to detail at the root of prodigiousness. Intelligence 40(5):419–426

    Article  Google Scholar 

  154. Lee J, Park S (2005) Working memory impairments in schizophrenia: a meta-analysis. J Abnorm Psychol 114(4):599–611

    Article  PubMed  Google Scholar 

  155. Silver H, Feldman P, Bilker W et al (2003) Working memory deficit as a core neuropsychological dysfunction in schizophrenia. Am J Psychiatry 160(10):1809–1816

    Article  PubMed  Google Scholar 

  156. Treffert DA (2009) The savant syndrome: an extraordinary condition. A synopsis: past, present, future. Philos Trans R Soc Lond B Biol Sci 364(1522):1351–1357. doi:10.1098/rstb.2008.0326

    Article  PubMed  PubMed Central  Google Scholar 

  157. Cardoso-Martins C, da Silva JR (2010) Cognitive and language correlates of hyperlexia: evidence from children with autism spectrum disorders. Read Writ 23(2):129–145

    Article  Google Scholar 

  158. Samson F, Mottron L, Soulières I et al (2012) Enhanced visual functioning in autism: an ALE meta-analysis. Hum Brain Mapp 33(7):1553–1581. doi:10.1002/hbm.21307

    Article  PubMed  Google Scholar 

  159. Revheim N, Butler PD, Schechter I et al (2006) Reading impairment and visual processing deficits in schizophrenia. Schizophr Res 87(1–3):238–245

    Article  PubMed  PubMed Central  Google Scholar 

  160. Revheim N, Corcoran CM, Dias E et al (2014) Reading deficits in schizophrenia and individuals at high clinical risk: relationship to sensory function, course of illness, and psychosocial outcome. Am J Psychiatry 171(9):949–959

    Article  PubMed  PubMed Central  Google Scholar 

  161. Arnott W, Sali L, Copland D (2011) Impaired reading comprehension in schizophrenia: evidence for underlying phonological processing deficits. Psychiatry Res 187(1–2):6–10

    Article  PubMed  Google Scholar 

  162. Williams EL, Casanova MF (2010) Autism and dyslexia: a spectrum of cognitive styles as defined by minicolumnar morphometry. Med Hypotheses 74(1):59–62

    Article  PubMed  Google Scholar 

  163. Brosnan M, Chapman E, Ashwin C (2014) Adolescents with autism spectrum disorder show a circumspect reasoning bias rather than ‘jumping-to-conclusions’. J Autism Dev Disord 44(3):513–520. doi:10.1007/s10803-013-1897-5

    Article  PubMed  Google Scholar 

  164. Speechley WJ, Whitman JC, Woodward TS (2010) The contribution of hypersalience to the “jumping to conclusions” bias associated with delusions in schizophrenia. J Psychiatry Neurosci 35(1):7–17

    Article  PubMed  PubMed Central  Google Scholar 

  165. Langdon R, Still M, Connors MH et al (2014) Jumping to delusions in early psychosis. Cogn Neuropsychiatry 19(3):241–256. doi:10.1080/13546805.2013.854198

    Article  PubMed  Google Scholar 

  166. Pellicano E, Burr D (2012) When the world becomes ‘too real’: a Bayesian explanation of autistic perception. Trends Cogn Sci 16(10):504–510

    Article  PubMed  Google Scholar 

  167. Lawson RP, Rees G, Friston KJ (2014) An aberrant precision account of autism. Front Hum Neurosci 8:302

    Article  PubMed  PubMed Central  Google Scholar 

  168. Ciaramidaro A, Bölte S, Schlitt S et al (2014) Schizophrenia and autism as contrasting minds: neural evidence for the hypo-hyper-intentionality hypothesis. Schizophr Bull pii:sbu124. [Epub ahead of print]

    Google Scholar 

  169. Backasch B, Straube B, Pyka M et al (2013) Hyperintentionality during automatic perception of naturalistic cooperative behaviour in patients with schizophrenia. Soc Neurosci 8(5):489–504. doi:10.1080/17470919.2013.820666

    Article  PubMed  Google Scholar 

  170. Moore JW, Pope A (2014) The intentionality bias and schizotypy. Q J Exp Psychol (Hove) 67(11):2218–2224

    Article  CAS  Google Scholar 

  171. Bara BG, Ciaramidaro A, Walter H et al (2011) Intentional minds: a philosophical analysis of intention tested through fMRI experiments involving people with schizophrenia, people with autism, and healthy individuals. Front Hum Neurosci 5:7

    Article  PubMed  PubMed Central  Google Scholar 

  172. Blijd-Hoogewys EM, van Geert PL, Serra M et al (2008) Measuring theory of mind in children. Psychometric properties of the ToM Storybooks. J Autism Dev Disord 38(10):1907–1930

    Article  CAS  PubMed  Google Scholar 

  173. Clemmensen L, van Os J, Skovgaard AM et al (2014) Hyper-theory-of-mind in children with psychotic experiences. PLoS One 9(11):e113082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Dziobek I, Fleck S, Kalbe E et al (2006) Introducing MASC: a movie for the assessment of social cognition. J Autism Dev Disord 36(5):623–636

    Article  PubMed  Google Scholar 

  175. Lahera G, Boada L, Pousa E et al (2014) Movie for the assessment of social cognition (MASC): Spanish validation. J Autism Dev Disord 44(8):1886–1896. doi:10.1007/s10803-014-2061-6

    Article  CAS  PubMed  Google Scholar 

  176. Montag C, Dziobek I, Richter IS et al (2011) Different aspects of theory of mind in paranoid schizophrenia: evidence from a video-based assessment. Psychiatry Res 186(2–3):203–209. doi:10.1016/j.psychres.2010.09.006

    Article  PubMed  Google Scholar 

  177. Fretland RA, Andersson S, Sundet K et al (2015) Theory of mind in schizophrenia: Error types and associations with symptoms. Schizophr Res. doi:10.1016/j.schres.2015.01.024, pii: S0920-9964(15)00028-6

    Google Scholar 

  178. Sharp C, Pane H, Ha C et al (2011) Theory of mind and emotion regulation difficulties in adolescents with borderline traits. J Am Acad Child Adolesc Psychiatry 50(6):563–573. doi:10.1016/j.jaac.2011.01.017

    Google Scholar 

  179. Bird G, Catmur C, Silani G et al (2006) Attention does not modulate neural responses to social stimuli in autism spectrum disorders. Neuroimage 31(4):1614–1624

    Article  PubMed  Google Scholar 

  180. Sasson NJ, Touchstone EW (2014) Visual attention to competing social and object images by preschool children with autism spectrum disorder. J Autism Dev Disord 44(3):584–592. doi:10.1007/s10803-013-1910-z

    Article  PubMed  Google Scholar 

  181. Blake R, Turner LM, Smoski MJ et al (2003) Visual recognition of biological motion is impaired in children with autism. Psychol Sci 14(2):151–157

    Article  PubMed  Google Scholar 

  182. Kim J, Park S, Blake R (2011) Perception of biological motion in schizophrenia and healthy individuals: a behavioral and FMRI study. PLoS One 6(5):e19971. doi:10.1371/journal.pone.0019971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Almeida RA, Dickinson JE, Maybery MT et al (2013) Visual search targeting either local or global perceptual processes differs as a function of autistic-like traits in the typically developing population. J Autism Dev Disord 43(6):1272–1286

    Article  PubMed  Google Scholar 

  184. Kana RK, Liu Y, Williams DL et al (2013) The local, global, and neural aspects of visuospatial processing in autism spectrum disorders. Neuropsychologia 51(14):2995–3003

    Article  PubMed  PubMed Central  Google Scholar 

  185. O’Connor JA, Wiffen BD, Reichenberg A et al (2012) Is deterioration of IQ a feature of first episode psychosis and how can we measure it? Schizophr Res 137(1–3):104–109

    Article  PubMed  Google Scholar 

  186. Russell-Smith SN, Maybery MT, Bayliss DM (2010) Are the autism and positive schizotypy spectra diametrically opposed in local versus global processing? J Autism Dev Disord 40:968–977

    Article  PubMed  Google Scholar 

  187. Craig J, Baron-Cohen S (1999) Creativity and imagination in autism and Asperger syndrome. J Autism Dev Disord 29(4):319–326

    Article  CAS  PubMed  Google Scholar 

  188. King D, Dockrell J, Stuart M (2014) Constructing fictional stories: a study of story narratives by children with autistic spectrum disorder. Res Dev Disabil 35(10):2438–2449

    Article  PubMed  Google Scholar 

  189. Jamison KR (1993) Touched with fire: manic-depressive illness and the artistic temperament. Free Press, New York

    Google Scholar 

  190. Nelson B, Rawlings D (2010) Relating schizotypy and personality to the phenomenology of creativity. Schizophr Bull 36(2):388–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Claridge G, McDonald A (2009) An investigation into the relationships between convergent and divergent thinking, schizotypy, and autistic traits. Pers Indiv Diff 46(8):794–799

    Article  Google Scholar 

  192. Kaufman JC (ed) (2014) Creativity and mental illness. Cambridge University Press, Cambridge

    Google Scholar 

  193. Hobson JA, Hobson RP, Malik S et al (2013) The relation between social engagement and pretend play in autism. Br J Dev Psychol 31(1):114–127. doi:10.1111/j.2044-835X.2012.02083.x

    Article  PubMed  Google Scholar 

  194. Jarrold C (2003) A review of research into pretend play in autism. Autism 7(4):379–390

    Article  PubMed  Google Scholar 

  195. Bonne O, Canetti L, Bachar E et al (1999) Childhood imaginary companionship and mental health in adolescence. Child Psychiatry Hum Dev 29(4):277–286

    Article  CAS  PubMed  Google Scholar 

  196. Gleason TR, Jarudi RN, Cheek JM (2003) Imagination, personality, and imaginary companions. Soc Behav Pers 31(7):721–737

    Article  Google Scholar 

  197. McLewin LA, Muller RT (2006) Attachment and social support in the prediction of psychopathology among young adults with and without a history of physical maltreatment. Child Abuse Negl 30(2):171–191

    Article  PubMed  Google Scholar 

  198. Fernyhough C, Bland K, Meins E et al (2007) Imaginary companions and young children’s responses to ambiguous auditory stimuli: implications for typical and atypical development. J Child Psychol Psychiatry 48(11):1094–1101

    Article  PubMed  Google Scholar 

  199. Wheelwright S, Baron-Cohen S (2001) The link between autism and skills such as engineering, maths, physics and computing: a reply to Jarrold and Routh. Autism 5(2):223–227

    Article  CAS  PubMed  Google Scholar 

  200. Spek AA, Velderman E (2013) Examining the relationship between Autism spectrum disorders and technical professions in high functioning adults. Res Autism Spectr Disord 7(5):606–612

    Article  Google Scholar 

  201. Dickerson AS, Pearson DA, Loveland KA et al (2014) Role of parental occupation in autism spectrum disorder diagnosis and severity. Res Autism Spectr Disord 8(9):997–1007

    Article  PubMed  PubMed Central  Google Scholar 

  202. Nettle D, Clegg H (2006) Schizotypy, creativity and mating success in humans. Proc Biol Sci 273(1586):611–615

    Article  PubMed  PubMed Central  Google Scholar 

  203. Rawlings D, Locarnini A (2008) Dimensional schizotypy, autism, and unusual word associations in artists and scientists. J Res Pers 42(2):465–471

    Article  Google Scholar 

  204. Campbell BC, Wang SS-H (2012) Familial linkage between neuropsychiatric disorders and intellectual interests. PLoS One 7(1):e30405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Durkin MS, Maenner MJ, Meaney FJ et al (2010) Socioeconomic inequality in the prevalence of autism spectrum disorder: evidence from a U.S. cross-sectional study. PLoS One 5(7):e11551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Leonard H, Glasson E, Nassar N et al (2011) Autism and intellectual disability are differentially related to sociodemographic background at birth. PLoS One 6(3):e17875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Werner S, Malaspina D, Rabinowitz J (2007) Socioeconomic status at birth is associated with risk of schizophrenia: population-based multilevel study. Schizophr Bull 33(6):1373–1378

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard J. Crespi Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Crespi, B.J. (2016). The Evolutionary Etiologies of Autism Spectrum and Psychotic Affective Spectrum Disorders. In: Alvergne, A., Jenkinson, C., Faurie, C. (eds) Evolutionary Thinking in Medicine. Advances in the Evolutionary Analysis of Human Behaviour. Springer, Cham. https://doi.org/10.1007/978-3-319-29716-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29716-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29714-9

  • Online ISBN: 978-3-319-29716-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics