Skip to main content

Evolutionary Principles and Host Defense

  • Chapter
  • First Online:
Evolutionary Thinking in Medicine

Abstract

The principles of evolution are uniquely relevant to understanding and reliably manipulating mechanisms of host immunity, pathogen behavior, and the interaction between host and pathogen in the service of promoting the health and well-being of individual patients and populations. In this chapter, I use examples of immune system function and interactions between pathogens and human hosts to illustrate some of the ways that evolution-related insights are exploited to advance the aims of clinicians and public health officers. I first focus on the coevolutionary processes by which human immunodeficiency virus-1 (HIV-1) evades neutralizing antibodies synthesized by host B-lymphocytes and B-lymphocytes evolve such that the antibodies they secrete can bind better to HIV-1 variants. In particular, I address the critical roles of somatic hypermutation of antibody variable domain genes and selection of Blymphocytes in the production of potent and broadly neutralizing antibodies which are regarded as necessary forĀ a highly efficacious vaccine intended to control the spread of a highly variable pathogen such as HIV-1. I also use other examples to illustrate the contributions of evolutionary thinking in immunology and infectious disease, including determining the paths of transmission of methicillin-resistant Staphylococcus aureus, the effects of vaccines and antibiotics on pneumococcal epidemiology, and the patterns of antibiotic resistance in selected pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tauber AI (1990) Metchnikoff, the modern immunologist. J Leukoc Biol 47(6):561ā€“567

    CASĀ  PubMedĀ  Google ScholarĀ 

  2. Silverstein AM (2003) Darwinism and immunology: from Metchnikoff to Burnet. Nat Immunol. 4(1):3ā€“6 (Review. PubMed PMID: 12496967)

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  3. Janeway CA Jr (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 54(Pt 1):1ā€“13 (Review. PubMed PMID: 2700931)

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  4. Medzhitov R (2009) Approaching the asymptote: 20Ā years later. Immunity 30(6):766ā€“775. doi:10.1016/j.immuni.2009.06.004

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  5. Paul WE (2012) The immune system. Fundamental immunology, 7th edn. In: Paul WE (ed) Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia, pp 1ā€“21

    Google ScholarĀ 

  6. Flajnik MJ, DuPasquier L (2012) The evolution of the immune system. Fundamental immunology, 7th edn. In: Paul WE (ed) Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia, pp 67ā€“128

    Google ScholarĀ 

  7. Hardy RR, Champhekar A (2012) B-Lymphocyte development and biology. Fundamental immunology, 7th edn. In: Paul WE (ed) Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia, pp 215ā€“245

    Google ScholarĀ 

  8. Rothenberg EV (2012) T-Lymphocyte developmental biology. Fundamental immunology, 7th edn. In: Paul WE (ed) Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia, pp 325ā€“354

    Google ScholarĀ 

  9. Burnet FM (2007) A modification of Jerneā€™s theory of antibody production using the concept of clonal selection. Aust J Sci 20:67ā€“69 (Nat Immunol 8:1024ā€“26. Reprinted from 1957)

    Google ScholarĀ 

  10. Talmage DW (1957) Allergy and immunology. Annu Rev Med 8:239ā€“256

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  11. Burnet FM (1959) The clonal selection theory of acquired immunity. Cambridge University Press, Cambridge

    BookĀ  Google ScholarĀ 

  12. Talmage DW (1959) Immunological specificity, unique combinations of selected natural globulins provide an alternative to the classical concept. Science 129(3364):1643ā€“1648

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Park YH, Osmond DG (1987) Phenotype and proliferation of early B lymphocyte precursor cells in mouse bone marrow. J Exp Med 165(2):444ā€“458 (PubMed PMID: 3102670; PubMed Central PMCID: PMC2188517)

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Korber B, Gaschen B, Yusim K, Thakallapally R, Kesmir C, Detours V (2001) Evolutionary and immunological implications of contemporary HIV-1 variation. Br Med Bull 58:19ā€“42. doi:10.1093/bmb/58.1.19

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  15. Burke DS (1997) Recombination in HIV: an important viral evolutionary strategy. Emerg Infect Dis 3:253ā€“259. doi:10.3201/eid0303.970301

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  16. Lemey P, Rambaut A, Pybus OG (2006) HIV evolutionary dynamics within and among hosts. AIDS Rev 8:125ā€“140

    PubMedĀ  Google ScholarĀ 

  17. Keele BF, Giorgi EE, Salazar-Gonzalez JF, Decker JM, Pham KT, Salazar MG (2008) Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc Natl Acad Sci USA 105:7552ā€“7557. doi:10.1073/pnas.0802203105

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  18. Scheid JF, Mouquet H, Feldhahn N, Seaman MS, Velinzon K, Pietzsch J, Ott RG, Anthony RM, Zebroski H, Hurley A et al (2009) Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals. Nature 458:636ā€“640

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  19. Xiao X, Chen W, Feng Y, Dimitrov DS (2009) Maturation pathways of cross-reactive HIV-1 neutralizing antibodies. Viruses 1:802ā€“817

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  20. Xiao X, Chen W, Feng Y, Zhu Z, Prabakaran P, Wang Y, Zhang MY, Longo NS, Dimitrov DS (2009) Germline-like predecessors of broadly neutralizing antibodies lack measurable binding to HIV-1 envelope glycoproteins: implications for evasion of immune responses and design of vaccine immunogens. Biochem Biophys Res Commun 390:404ā€“409

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  21. Tarlinton D, Good-Jacobson K (2013) Diversity among memory B cells: origin, consequences, and utility. Science 341(6151):1205ā€“1211. doi:10.1126/science.1241146

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  22. Greenspan NS (2014) Design challenges for HIV-1vaccines based on humoral immunity. Front Immunol 5:335. doi:10.3389/fimmu.2014.00335 (eCollection)

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  23. Joseph CG, Darrah E, Shah AA, Skora AD, Casciola-Rosen LA, Wigley FM, Boin F, Fava A, Thoburn C, Kinde I, Jiao Y, Papadopoulos N, Kinzler KW, Vogelstein B, Rosen A (2014) Association of the autoimmune disease scleroderma with an immunologic response to cancer. Science 343(6167):152ā€“157. doi:10.1126/science.1246886 (Epub 2013 Dec 5. PubMed PMID: 24310608)

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  24. http://www.cdc.gov/parasites/toxoplasmosis/, 2013. (last accessed 9/07/14)

  25. Etheridge RD, Alaganan A, Tang K, Lou HJ, Turk BE, Sibley LD (2014) The Toxoplasma pseudokinase ROP5 forms complexes with ROP18 and ROP17 kinases that synergize to control acute virulence in mice. Cell Host Microbe 15(5):537ā€“550. doi:10.1016/j.chom.2014.04.002

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  26. Saeij JP, Boyle JP, Coller S, Taylor S, Sibley LD, Brooke-Powell ET, Ajioka JW, Boothroyd JC (2006) Polymorphic secreted kinases are key virulence factors in toxoplasmosis. Science 314(5806):1780ā€“1783

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  27. Taylor S, Barragan A, Su C, Fux B, Fentress SJ, Tang K, Beatty WL, Hajj HE, Jerome M, Behnke MS, White M, Wootton JC, Sibley LD (2006) A secreted serine-threonine kinase determines virulence in the eukaryotic pathogen Toxoplasma gondii. Science 314(5806):1776ā€“1780

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  28. Fentress SJ, Behnke MS, Dunay IR, Mashayekhi M, Rommereim LM, Fox BA, Bzik DJ, Taylor GA, Turk BE, Lichti CF, Townsend RR, Qiu W, Hui R, Beatty WL, Sibley LD (2010) Phosphorylation of immunity-related GTPases by a Toxoplasma gondii-secreted kinase promotes macrophage survival and virulence. Cell Host Microbe 8(6):484ā€“495. doi:10.1016/j.chom.2010.11.005

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  29. Kƶnen-Waisman S, Howard JC (2007) Cell-autonomous immunity to Toxoplasma gondii in mouse and man. Microbes Infect 9:1652ā€“1661

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  30. Harris SR, Cartwright EJ, Tƶrƶk ME, Holden MT, Brown NM, Ogilvy-Stuart AL, Ellington MJ, Quail MA, Bentley SD, Parkhill J, Peacock SJ (2012) Whole-genome sequencing for analysis of an outbreak of meticillin-resistant Staphylococcus aureus: a descriptive study. Lancet Infect Dis. pii: S1473ā€“3099(12)70268-2. doi:10.1016/S1473-3099(12)70268-2 (Epub ahead of print)

  31. Xue K (2014) Superbug: an epidemic begins. Harvard Magazine, Mayā€“June, pp 40ā€“49

    Google ScholarĀ 

  32. Aminov RI (2010) A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol 1:134. doi:10.3389/fmicb.2010.00134 (eCollection. PubMed PMID: 21687759; PubMed Central PMCID: PMC3109405)

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  33. Goossens H, Ferech M, Vander Stichele R, Elseviers M, ESAC Project Group (2005) Outpatient antibiotic use in Europe and association with resistance: a cross-national database study. Lancet 365(9459):579ā€“587

    Google ScholarĀ 

  34. Greene SE, Reid A (2013) Moving targets: fighting the evolution of resistance in infections, pests, and cancer. American Academy of Microbiology, Washington, DC

    Google ScholarĀ 

  35. Gubareva LV, Kaiser L, Matrosovich MN, Soo-Hoo Y, Hayden FG (2001) Selection of influenza virus mutants in experimentally infected volunteers treated with oseltamivir. J Infect Dis 183(4):523ā€“531 (Epub 2001 Jan 11)

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  36. Bloom JD, Gong LI, Baltimore D (2010) Permissive secondary mutations enable the evolution of influenza oseltamivir resistance. Science 328(5983):1272ā€“1275

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  37. Russell RJ, Haire LF, Stevens DJ, Collins PJ, Lin YP, Blackburn GM, Hay AJ, Gamblin SJ, Skehel JJ (2006) The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature 443(7107):45ā€“49 (Epub 2006 Aug 16)

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  38. Collins PJ, Haire LF, Lin YP, Liu J, Russell RJ, Walker PA, Skehel JJ, Martin SR, Hay AJ, Gamblin SJ (2008) Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants. Nature 453(7199):1258ā€“1261 (Epub 2008 May 14)

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  39. Centers for Disease Control and Prevention (1999) Impact of vaccines universally recommended for childrenā€”United States, 1990ā€“1998. MMWR Morb Mortal Wkly Rep 48(12):243ā€“248

    Google ScholarĀ 

  40. Centers for Disease Control and Prevention (1999) Ten great public health achievementsā€”United States, 1900ā€“1999. MMWR Morb Mortal Wkly Rep 48(12):241ā€“243

    Google ScholarĀ 

  41. Feikin DR, Kagucia EW, Loo JD, Link-Gelles R, Puhan MA, Cherian T, Levine OS, Whitney CG, Oā€™Brien KL, Moore MR (2013) Serotype replacement study group. Serotype-specific changes in invasive pneumococcal disease after pneumococcal conjugate vaccine introduction: a pooled analysis of multiple surveillance sites. PLoS Med 10(9):e1001517. doi:10.1371/journal.pmed.1001517 (Epub 2013 Sep 24)

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  42. Croucher NJ, Harris SR, Fraser C, Quail MA, Burton J, van der Linden M, McGee L, von Gottberg A, Song JH, Ko KS, Pichon B, Baker S, Parry CM, Lambertsen LM, Shahinas D, Pillai DR, Mitchell TJ, Dougan G, Tomasz A, Klugman KP, Parkhill J, Hanage WP, Bentley SD (2011) Rapid pneumococcal evolution in response to clinical interventions. Science 331(6016):430ā€“434

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  43. Neels JG, Olefsky JM (2006) Inflamed fat: what starts the fire? J Clin Invest 116(1):33ā€“35. doi:10.1172/JCI27280)

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  44. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027ā€“1031

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  45. Blaser MJ (2014) Missing microbes: how the overuse of antibiotics is fueling our modern plagues. Henry Holt and Company, New York

    Google ScholarĀ 

  46. West AP Jr, Scharf L, Scheid JF, Klein F, Bjorkman PJ, Nussenzweig MC (2014) Structural insights on the role of antibodies in HIV-1 vaccine and therapy. Cell 156(4):633ā€“648

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil Greenspan M.D., Ph.D. .

Editor information

Editors and Affiliations

Glossary

Immunity-related GTPases

A family of proteins in humans, mice, and other mammals that are encoded by genes that can become active in response to the cytokine interferon-gamma. These proteins can catalyze the hydrolysis of guanosine triphosphate to guanosine diphosphate and orthophosphate and can be involved in immunity to vacuolar pathogens by triggering the process of autophagy, which also participates in normal cellular recycling of cellular components. Opsonizationā€”the process by which molecules such as antibodies or proteolytically derived components of the serum proteins that are participants inĀ the complement cascade facilitate the ingestion of bacteria, other microbial pathogens, or other particulates by phagocytes, such as neutrophils, monocytes, macrophages, or dendritic cells.

Pathogen

A microbe or macroscopic parasite that can infect host organisms and can cause cellular dysfunction, tissue damage, and fitness reduction in those hosts.

Phylogenetic relationship

A relationship between species, cells, or genes based on relative temporal proximity to shared common ancestors; thus if we consider three species or three genes, A, B, and C, if A and B shared a more recent common ancestor than either A or B shares with C, A and B are more closely related, phylogenetically, to one another than to C.

Somatic cell competition

A process in which survival and proliferation of non-germ cell body cells, such as Blymphocytes, depends on comparative abilities to acquire a limiting resource, such as critical signals from CD4+ T-cells (so-called helper T-cells) in the case of germinal center Bcells.

Somatic hypermutation

A process affecting Blymphocytes following their activation by antigens in which the portions of immunoglobulin encoding genes that determine the structures of the antibody domains responsible for directly binding to antigen are subjected to an increased rate of mutation. This process typically occurs in germinal centers within lymph nodes or other secondary lymphoid tissues.

Tropism

A characteristic of a virus or other pathogen that pertains to which cell types or tissues of which species can support the replication of that pathogen.

Virulence

Frequently regarded as an attribute of a pathogen pertaining to the extent of debilitation that follows infection; in evolutionary terms, virulence is a relational property attributable to a particular hostā€“pathogen pair that measures the extent to which infection of that host with that pathogen reduces host reproductive fitness.

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Greenspan, N. (2016). Evolutionary Principles and Host Defense. In: Alvergne, A., Jenkinson, C., Faurie, C. (eds) Evolutionary Thinking in Medicine. Advances in the Evolutionary Analysis of Human Behaviour. Springer, Cham. https://doi.org/10.1007/978-3-319-29716-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29716-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29714-9

  • Online ISBN: 978-3-319-29716-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics