Skip to main content

Why Chemotherapy Does Not Work: Cancer Genome Evolution and the Illusion of Oncogene Addiction

  • Chapter
  • First Online:
Evolutionary Thinking in Medicine

Abstract

A long-held and dominating view that cancer is a genetic disease caused by deterministic sequential mutations in a restricted number of cancer-driver genes (oncogenes and tumour suppressor genes), occurring in a continuous linear pattern of tumour progression, and directly determining the hallmarks of cancer, has now been disproved. This view is tied to the “oncogene addiction” concept: the idea that tumour cells are dependent on a single activated oncogenic protein or pathway to maintain their malignant properties. However, this has also been challenged by both the observation of tumour relapses after the inactivation of oncogene in mouse models and the failure of targeted therapies in clinical trials. In this chapter, we adopt an evolutionary perspective to consider that the majority of tumours contain a heterogeneous cell population with many random genome alterations and extensively rewired signalling networks. In this context, chromosome instability (CIN) drives genomic and (epi)genetic heterogeneity, rewires and creates new genetic networks due to the dynamic alterations of transcriptome/proteome, and eventually generates the diverse tumour cell phenotype variants, which constitutes the basis for cancer evolutionary selection and multidrug resistance. Any factors or stresses, including chemotherapy, that contribute to CIN may promote the evolution of cancer. In this chapter, we review (i) the genome theory of cancer, (ii) the role of CIN for cancer evolution, and (iii) why cancer mouse models do not recapitulate a natural tumour. The implications of a stochastic model of genome evolution for chemotherapy are discussed.

Vadym Kavsan—Deceased

I dedicate this chapter to the memory of my tutor, professor Vadym Kavsan, a prominent Ukrainian scientist (1939–2014). His patience, advice, guidance, and attention to detail were invaluable. His original ideas and striking personality will inspire me in future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Forbes SA, Beare D, Gunasekaran P et al (2014) COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res 43:D805–D811. doi:10.1093/nar/gku1075

    Article  PubMed  PubMed Central  Google Scholar 

  2. An O, Pendino V, D’Antonio M et al (2014) NCG 4.0: the network of cancer genes in the era of massive mutational screenings of cancer genomes. Database (Oxford) 2014. doi:10.1093/database/bau015

  3. Heng HHQ (2007) Cancer genome sequencing: the challenges ahead. BioEssays 29:783–794. doi:10.1002/bies.20610

    Article  PubMed  Google Scholar 

  4. Salk JJ, Fox EJ, Loeb LA (2010) Mutational heterogeneity in human cancers: origin and consequences. Annu Rev Pathol 5:51–75. doi:10.1146/annurev-pathol-121808-102113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Todorovic-Rakovic N (2011) Genome-based versus gene-based theory of cancer: possible implications for clinical practice. J Biosci 36:719–724

    Article  PubMed  Google Scholar 

  6. Brosnan JA, Iacobuzio-Donahue CA (2012) A new branch on the tree: next-generation sequencing in the study of cancer evolution. Semin Cell Dev Biol 23:237–242. doi:10.1016/j.semcdb.2011.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Heng HHQ, Liu G, Stevens JB et al (2011) Decoding the genome beyond sequencing: the new phase of genomic research. Genomics 98:242–252. doi:10.1016/j.ygeno.2011.05.008

    Article  CAS  PubMed  Google Scholar 

  8. Polyak K (2008) Is breast tumor progression really linear? Clin Cancer Res 14:339–341. doi:10.1158/1078-0432.CCR-07-2188

    Article  PubMed  Google Scholar 

  9. Heng HHQ, Liu G, Bremer S et al (2006) Clonal and non-clonal chromosome aberrations and genome variation and aberration. Genome 204:195–204. doi:10.1139/G06-023

    Article  Google Scholar 

  10. Heng HHQ, Stevens JB, Bremer SW et al (2010) The evolutionary mechanism of cancer. J Cell Biochem 109:1072–1084. doi:10.1002/jcb.22497

    CAS  PubMed  Google Scholar 

  11. Heng HHQ, Stevens JB, Bremer SW et al (2011) Evolutionary mechanisms and diversity in cancer. Adv Cancer Res. doi:10.1016/B978-0-12-387688-1.00008-9

    PubMed  Google Scholar 

  12. Heng HH, Bremer SW, Stevens JB et al (2013) Chromosomal instability (CIN): what it is and why it is crucial to cancer evolution. Cancer Metastasis Rev 32:325–340. doi:10.1007/s10555-013-9427-7

    Article  PubMed  Google Scholar 

  13. Horne SD, Pollick SA, Heng HHQ (2015) Evolutionary mechanism unifies the hallmarks of cancer. Int J Cancer 136:2012–2021. doi:10.1002/ijc.29031

    Article  CAS  PubMed  Google Scholar 

  14. Heng HHQ, Bremer SW, Stevens JB et al (2009) Genetic and epigenetic heterogeneity in cancer: a genome-centric perspective. J Cell Physiol 220:538–547. doi:10.1002/jcp.21799

    Article  CAS  PubMed  Google Scholar 

  15. Heng HHQ (2009) The genome-centric concept: resynthesis of evolutionary theory. BioEssays 31:512–525. doi:10.1002/bies.200800182

    Article  PubMed  Google Scholar 

  16. Stepanenko AA, Vassetzky YS, Kavsan VM (2013) Antagonistic functional duality of cancer genes. Gene 529:199–207. doi:10.1016/j.gene.2013.07.047

    Article  CAS  PubMed  Google Scholar 

  17. Abdallah BY, Horne SD, Stevens JB et al (2013) Why unstable genomes are incompatible with average profiles single cell heterogeneity. Cell cycle 12:3640–3649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu G, Stevens JB, Horne SD et al (2014) Genome chaos: survival strategy during crisis. Cell Cycle 13:528–537. doi:10.4161/cc.27378

    Article  CAS  PubMed  Google Scholar 

  19. Stevens JB, Abdallah BY, Liu G et al (2011) Diverse system stresses: common mechanisms of chromosome fragmentation. Cell Death Dis 2:e178. doi:10.1038/cddis.2011.60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stevens JB, Horne SD, Abdallah BY et al (2013) Chromosomal instability and transcriptome dynamics in cancer. Cancer Metastasis Rev 32:391–402. doi:10.1007/s10555-013-9428-6

    Article  CAS  PubMed  Google Scholar 

  21. Ye CJ, Liu G, Bremer SW, Heng HHQ (2007) The dynamics of cancer chromosomes and genomes. Cytogenet Genome Res 118:237–246. doi:10.1159/000108306

    Article  CAS  PubMed  Google Scholar 

  22. Ye CJ, Stevens JB, Liu G et al (2009) Genome based cell population heterogeneity promotes tumorigenicity: the evolutionary mechanism of cancer. J Cell Physiol 219:288–300. doi:10.1002/jcp.21663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li L, McCormack AA, Nicholson JM et al (2009) Cancer-causing karyotypes: chromosomal equilibria between destabilizing aneuploidy and stabilizing selection for oncogenic function. Cancer Genet Cytogenet 188:1–25. doi:10.1016/j.cancergencyto.2008.08.016

    Article  CAS  PubMed  Google Scholar 

  24. Silk AD, Zasadil LM, Holland AJ et al (2013) Chromosome missegregation rate predicts whether aneuploidy will promote or suppress tumors. Proc Natl Acad Sci USA 110:E4134–E4141. doi:10.1073/pnas.1317042110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Birkbak NJ, Eklund AC, Li Q et al (2011) Paradoxical relationship between chromosomal instability and survival outcome in cancer. Cancer Res 71:3447–3452. doi:10.1158/0008-5472.CAN-10-3667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Roylance R, Endesfelder D, Gorman P et al (2011) Relationship of extreme chromosomal instability with long-term survival in a retrospective analysis of primary breast cancer. Cancer Epidemiol Biomarkers Prev 20:2183–2194. doi:10.1158/1055-9965.EPI-11-0343

    Article  PubMed  PubMed Central  Google Scholar 

  27. Horne SD, Stevens JB, Abdallah BY et al (2013) Why imatinib remains an exception of cancer research. J Cell Physiol 228:665–670. doi:10.1002/jcp.24233

    Article  CAS  PubMed  Google Scholar 

  28. Nicholson JM, Duesberg P (2009) On the karyotypic origin and evolution of cancer cells. Cancer Genet Cytogenet 194:96–110. doi:10.1016/j.cancergencyto.2009.06.008

    Article  CAS  PubMed  Google Scholar 

  29. Fukasawa K (2007) Oncogenes and tumour suppressors take on centrosomes. Nat Rev Cancer 7:911–924. doi:10.1038/nrc2249

    Article  CAS  PubMed  Google Scholar 

  30. Harrison MK, Adon AM, Saavedra HI (2011) The G1 phase Cdks regulate the centrosome cycle and mediate oncogene-dependent centrosome amplification. Cell Div 6:2. doi:10.1186/1747-1028-6-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Janssen A, Medema RH (2013) Genetic instability: tipping the balance. Oncogene 32:4459–4470. doi:10.1038/onc.2012.576

    Article  CAS  PubMed  Google Scholar 

  32. Lecona E, Fernández-Capetillo O (2014) Replication stress and cancer: it takes two to tango. Exp Cell Res 329:26–34. doi:10.1016/j.yexcr.2014.09.019

    Article  CAS  PubMed  Google Scholar 

  33. Thompson SL, Bakhoum SF, Compton DA (2010) Mechanisms of chromosomal instability. Curr Biol 20:R285–R295. doi:10.1016/j.cub.2010.01.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stepanenko A, Kavsan V (2013) Cancer genes and chromosome instability. In Oncogene and Cancer – Fom Bench to Clinic (Siregar Y ed.), pp. 151–182. InTech Publisher, Rijeka, Croatia.

    Google Scholar 

  35. Duesberg P, Li R, Fabarius A, Hehlmann R (2005) The chromosomal basis of cancer. Cell Oncol 27:293–318

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Duesberg P, Li R, Sachs R et al (2007) Cancer drug resistance: the central role of the karyotype. Drug Resist Updat 10:51–58. doi:10.1016/j.drup.2007.02.003

    Article  CAS  PubMed  Google Scholar 

  37. Fabarius A, Li R, Yerganian G et al (2008) Specific clones of spontaneously evolving karyotypes generate individuality of cancers. Cancer Genet Cytogenet 180:89–99. doi:10.1016/j.cancergencyto.2007.10.006

    Article  CAS  PubMed  Google Scholar 

  38. Li L, McCormack AA, Nicholson JM et al (2009) Cancer-causing karyotypes: chromosomal equilibria between destabilizing aneuploidy and stabilizing selection for oncogenic function. Cancer Genet Cytogenet 188:1–25. doi:10.1016/j.cancergencyto.2008.08.016

    Google Scholar 

  39. Klein A, Li N, Nicholson JM et al (2010) Transgenic oncogenes induce oncogene-independent cancers with individual karyotypes and phenotypes. Cancer Genet Cytogenet 200:79–99. doi:10.1016/j.cancergencyto.2010.04.008

    Article  CAS  PubMed  Google Scholar 

  40. McCormack A, Fan JL, Duesberg M et al (2013) Individual karyotypes at the origins of cervical carcinomas. Mol Cytogenet 6:44. doi:10.1186/1755-8166-6-44

    Article  PubMed  PubMed Central  Google Scholar 

  41. Duesberg P, McCormack A (2013) Immortality of cancers: a consequence of inherent karyotypic variations and selections for autonomy. Cell Cycle 12:783–802. doi:10.4161/cc.23720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Duesberg P, Mandrioli D, McCormack A, Nicholson JM (2011) Is carcinogenesis a form of speciation? Cell Cycle 10:2100–2114

    Article  CAS  PubMed  Google Scholar 

  43. Weinstein IB (2002) Cancer. Addiction to oncogenes–the Achilles heal of cancer. Science 297:63–64. doi:10.1126/science.1073096

    Article  CAS  PubMed  Google Scholar 

  44. Pellicano F, Mukherjee L, Holyoake TL (2014) Concise review: cancer cells escape from oncogene addiction: understanding the mechanisms behind treatment failure for more effective targeting. Stem Cells 32:1373–1379. doi:10.1002/stem.1678

    Article  CAS  PubMed  Google Scholar 

  45. Liedtke C, Wang J, Tordai A et al (2010) Clinical evaluation of chemotherapy response predictors developed from breast cancer cell lines. Breast Cancer Res Treat 121:301–309. doi:10.1007/s10549-009-0445-7

    Article  CAS  PubMed  Google Scholar 

  46. Kessler DA, Austin RH, Levine H (2014) Resistance to chemotherapy: patient variability and cellular heterogeneity. Cancer Res 74:4663–4670. doi:10.1158/0008-5472.CAN-14-0118

    Article  CAS  PubMed  Google Scholar 

  47. Gillet J-P, Calcagno AM, Varma S et al (2011) Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. Proc Natl Acad Sci USA 108:18708–18713. doi:10.1073/pnas.1111840108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gillet J-P, Varma S, Gottesman MM (2013) The clinical relevance of cancer cell lines. J Natl Cancer Inst 105:452–458. doi:10.1093/jnci/djt007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Weinstein JN (2012) Drug discovery: cell lines battle cancer. Nature 483:544–545. doi:10.1038/483544a

    Article  CAS  PubMed  Google Scholar 

  50. Taneja P, Zhu S, Maglic D et al (2011) Transgenic and knockout mice models to reveal the functions of tumor suppressor genes. Clin Med Insights Oncol 5:235–257. doi:10.4137/CMO.S7516

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Herter-Sprie GS, Kung AL, Wong K-K (2013) New cast for a new era: preclinical cancer drug development revisited. J Clin Invest 123:3639–3645. doi:10.1172/JCI68340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Politi K, Pao W (2011) How genetically engineered mouse tumor models provide insights into human cancers. J Clin Oncol 29:2273–2281. doi:10.1200/JCO.2010.30.8304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Richmond A, Su Y (2008) Mouse xenograft models vs GEM models for human cancer therapeutics. Dis Model Mech 1:78–82. doi:10.1242/dmm.000976

    Google Scholar 

  54. Cheon D-J, Orsulic S (2011) Mouse models of cancer. Annu Rev Pathol 6:95–119. doi:10.1146/annurev.pathol.3.121806.154244

    Article  CAS  PubMed  Google Scholar 

  55. Stepanenko AA, Kavsan VM (2012) Immortalization and malignant transformation of Eukaryotic cells. Cytol Genet 46:96–129. doi:10.3103/S0095452712020041

    Article  Google Scholar 

  56. Stepanenko AA, Kavsan VM (2012) Evolutionary karyotypic theory of cancer versus conventional cancer gene mutation theory. Biopolym Cell 28:267–280. doi:10.7124/bc.000059

    Article  Google Scholar 

  57. Stepanenko A, Andreieva S, Korets K, Mykytenko D (2015) Step-wise and punctuated genome evolution drive phenotype changes of tumor cells. Mutat Res—Fundam Mol Mech Mutagen 771:56–69. doi:10.1016/j.mrfmmm.2014.12.006

    Article  CAS  Google Scholar 

  58. Huang S (2013) Genetic and non-genetic instability in tumor progression: link between the fitness landscape and the epigenetic landscape of cancer cells. Cancer Metastasis Rev 32:423–448. doi:10.1007/s10555-013-9435-7

    Article  PubMed  Google Scholar 

  59. Lou X, Zhang J, Liu S et al (2014) The other side of the coin: the tumor-suppressive aspect of oncogenes and the oncogenic aspect of tumor-suppressive genes, such as those along the CCND-CDK4/6-RB axis. Cell Cycle 13:1677–1693. doi:10.4161/cc.29082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in frames of the programs “Fundamental grounds of molecular and cell biotechnologies” and “Nanotechnologies and nanomaterials for 2010–2014 years” by the National Academy of Sciences of Ukraine (NASU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksei Stepanenko Ph.D. .

Editor information

Editors and Affiliations

Glossary

Aneuploidy

Refers to a state of karyotype when whole chromosome(s) or parts of chromosome(s) are lost or supernumerary

Chromosome instability (CIN)

Is a high rate of genome changes of a given cell population (cell to cell variation). It implies a constant process of generation of numerical (loss or gain of whole chromosomes) and structural (loss of chromosome arm, translocations, amplifications, deletions, insertions) aneuploidy variants

Clonal chromosome aberration

Is an aberration found in two cells or more among at least 20 examined metaphases

Dysplasia

Is appearance of the tissue as disordered, with the increased number of immature cells, and great variability between cells

Evolutionary potential

Is a probability of cell population to persist, adapt, and survive the harsh microenvironment, intrinsic or extrinsic stresses

Genetic network of a cell

Includes the whole gene content, RNA, and protein expression and their interaction in space and time

Genetically engineered mouse cancer model

Is a model when a mouse genetic profile is altered such that one or several genes thought to be involved in tumourigenesis are mutated, deleted, or overexpressed

Hyperplasia

Is a condition when cell number increases due to hyperproliferation unbalanced by cell elimination that results to an increase in the amount/volume of a tissue/organ

Non-clonal chromosome aberration

Is an aberration found in only one cell among at least 20–50 examined metaphases

Orthotopic xenograft

Is the transplantation of a primary human tumour mass or the injection of human tumour cell line into a mouse tissue from which a tumour mass/cell line naturally originated

Transcriptome

Is the complete set of mRNA, rRNA, tRNA, and other non-coding RNA transcripts produced by the genome of a cell or a population of cells at any given time

Transgene

Is a foreign gene that has been deliberately transferred into genome of a cell/an organism by the genetic engineering techniques

Transgene-negative tumours

Are tumours formed by cells, which lost a transgene that endowed advantageous traits and accelerated propagation

Somatic evolution

Is the accumulation of heritable (through mitosis) variations such as mutations, epigenetic changes, and sporadic aneuploidy in somatic cells within a body during a lifetime

Stochastic nature of cancer evolution

Implies that cancer is mainly driven by random, non-clonal, and transitional genome alterations, and these dynamic genome changes are neither shared by cells of the same tumour nor by the different tumours

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stepanenko, A., Kavsan, V. (2016). Why Chemotherapy Does Not Work: Cancer Genome Evolution and the Illusion of Oncogene Addiction. In: Alvergne, A., Jenkinson, C., Faurie, C. (eds) Evolutionary Thinking in Medicine. Advances in the Evolutionary Analysis of Human Behaviour. Springer, Cham. https://doi.org/10.1007/978-3-319-29716-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29716-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29714-9

  • Online ISBN: 978-3-319-29716-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics