Skip to main content

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

A map on a torus is called “quasiperiodic” if there is a change of variables which converts it into a pure rotation in each coordinate of the torus. We develop a numerical method for finding this change of variables, a method that can be used effectively to determine how smooth (i.e., differentiable) the change of variables is, even in cases with large nonlinearities. Our method relies on fast and accurate estimates of limits of ergodic averages. Instead of uniform averages that assign equal weights to points along the trajectory of N points, we consider averages with a non-uniform distribution of weights, weighing the early and late points of the trajectory much less than those near the midpoint N∕2. We provide a one-dimensional quasiperiodic map as an example and show that our weighted averages converge far faster than the usual rate of O(1∕N), provided f is sufficiently differentiable. We use this method to efficiently numerically compute rotation numbers, invariant densities, conjugacies of quasiperiodic systems, and to provide evidence that the changes of variables are (real) analytic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Brin, G. Stuck, Introduction to Dynamical Systems (Cambridge University Press, Cambridge, 2002)

    Book  MATH  Google Scholar 

  2. U. Krengel, On the speed of convergence in the ergodic theorem. Monatsh. Math. 86(1), 3–6 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  3. M.R. Herman, Sur la conjugaison différentiable des difféomorphismes due cercle à des rotations. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 49(1), 5–233 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Simó, Averaging Under Fast Quasiperiodic Forcing (Plenum Pub. Co., New York, 1994)

    Book  Google Scholar 

  5. C. Simó, P. Sousa-Silva, M. Terra, Practical stability domains near L 4, 5 in the restricted three-body problem: some preliminary facts. Prog. Chall. Dyn. Syst. 54, 367–382 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Lin, M. Weber, Weighted ergodic theorems and strong laws of large numbers. Ergod. Theory Dyn. Syst. 27(02), 511–543 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Bellow, R. Jones, J. Rosenblatt, Almost everywhere convergence of convolution powers. Ergod. Theory Dyn. Syst. 14(03), 415–432 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Bellow, V. Losert, The weighted pointwise ergodic theorem and the individual ergodic theorem along subsequences. Ann. l’Inst. Fourier 52(2), 561–583 (2002)

    Article  MATH  Google Scholar 

  9. F. Durand, D. Shneider, Ergodic averages with deterministic weights. Trans. Am. Math. Soc. 288(1), 307–345 (1985)

    Article  Google Scholar 

  10. S. Das, E. Sander, Y. Saiki, J.A. Yorke, Quantitative quasiperiodicity. Preprint: arXiv:1508.00062 [math.DS] (2015)

    Google Scholar 

  11. S. Das, J.A. Yorke, Super convergence of ergodic averages for quasiperiodic orbits. Preprint: arXiv:1506.06810 [math.DS] (2015)

    Google Scholar 

  12. E. Berkson, T.A. Gillespie, Spectral decompositions, ergodic averages, and the Hilbert transform. Stud. Math. 144, 39–61 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Akcoglu et al., The strong sweeping out property for lacunary sequences, Riemann sums, convolution powers, and related matters. Ergod. Theory Dyn. Syst. 16(02), 207–253 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. M.D. Ha, Weighted ergodic averages. Turk. J. Math. 22(1), 61–68 (1998)

    MathSciNet  MATH  Google Scholar 

  15. E.J. Kostelich, I. Kan, C. Grebogi, E. Ott, J.A. Yorke, Unstable dimension variability: a source of nonhyperbolicity in chaotic systems. Phys. D 109(1–2), 81–90 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. V. Arnold, Small denominators. I. Mapping of the circumference onto itself. Am. Math. Soc. Transl. (2) 46, 213–284 (1965)

    Google Scholar 

  17. J.R. Miller, J.A. Yorke, Finding all periodic orbits of maps using Newton methods: sizes of basins. Phys. D: Nonlinear Phenom. 135(3), 195–211 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. V.M. Becerra, J.D. Biggs, S.J. Nasuto, V.F. Ruiz, W. Holderbaum, D. Izzo, Using Newton’s method to search for quasi-periodic relative satellite motion based on nonlinear Hamiltonian models, in 7th International Conference on Dynamics and Control of Systems and Structures in Space, vol. 7 (2006)

    Google Scholar 

  19. F. Schilder, H.M. Osinga, W. Vogt, Continuation of quasi-periodic invariant tori. SIAM J. Appl. Dyn. Syst. 4(3), 459–488 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. A. Denjoy, Sur les courbes definies par les equations differentielles a la surface du tore. J. Math. Pures et Appl. 11, 333–375 (1932)

    MATH  Google Scholar 

  21. Y. Katznelson, D. Ornstein, The absolute continuity of the conjugation of certain diffeomorphisms of the circle. Ergod. Theory Dyn. Syst. 9, 681–690 (1989)

    MathSciNet  MATH  Google Scholar 

  22. Y. Katznelson, D. Ornstein, The differentiability of the conjugation of certain diffeomorphisms of the circle. Ergod. Theory Dyn. Syst. 9, 643–680 (1989)

    MathSciNet  MATH  Google Scholar 

  23. J.C. Yoccoz, Conjugaison differentiable des diffeomorphismes du cercle dont le nombre de rotation verifie une condition diophantine. Ann. Sci. l’École Norm. Supér. 17(3), 333-359 (1984)

    MathSciNet  MATH  Google Scholar 

  24. M. Herman, Simple proofs of local conjugacy theorems for diffeomorphisms of the circle with almost every rotation number. Boletim da Sociedade Brasileira de Matemática 16(1), 45–83 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  25. M.R. Herman, Resultats recents sur la conjugaison differentiable, in Proceedings of the International Congress of Mathematicians, Helsinki, vol. 2 (American Mathematical Society, Providence, 1978), pp. 811–820

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suddhasattwa Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Das, S., Saiki, Y., Sander, E., Yorke, J.A. (2016). Quasiperiodicity: Rotation Numbers. In: Skiadas, C. (eds) The Foundations of Chaos Revisited: From Poincaré to Recent Advancements. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-29701-9_7

Download citation

Publish with us

Policies and ethics