Skip to main content

Part of the book series: Understanding Complex Systems ((UCS))

  • 1405 Accesses

Abstract

This review tries to explain how Chaos theory developed in France in the late seventies-early eighties, not as the result of a planned attempt to bolster a field but, as often in human matters, as a result of an unlikely convergence of various events, as well as of a long tradition in the study of nonlinear phenomena that can be traced back to Poincaré. Some general reflexions will be presented on the connection between the way Science and research are organized and the way things really work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Aubin, A. Dahan Dalmonico, Writing the history of dynamical systems and chaos: longue durée and revolution, disciplines and culture. Hist. Math. 29, 1 (2002) and references therein

    Google Scholar 

  2. H. Poincaré, Sur les courbes définies par une équation différentielle. Journal de mathématiques pures et appliquées, Série 1 7, 375 (1881); 8, 251 (1882); Série 2 1, 167 (1885) and 2, 151 (1886). Those four papers, based on Poincaré PhD thesis are a monument of the history of Mathematics

    Google Scholar 

  3. P. Coullet, Bifurcation at the dawn of Modern Science. CR Mecanique 340, 777 (2012). We can only urge interested readers to read this beautiful piece on Science of classical times

    Google Scholar 

  4. J.M. Ginoux, History of Nonlinear Oscillations Theory (1880–1940, to appear)

    Google Scholar 

  5. Y. Rocard, Dynamique générale des vibrations (Dunod, Paris, 1971)

    MATH  Google Scholar 

  6. N. Levinson, Transformation theory of nonlinear differential equations of the second order. Ann. Math. 45, 723 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Ruelle, F. Takens, On the nature of turbulence. Commun. Math. Phys. 20, 167 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. M. Hénon, C. Heiles, The applicability of the third integral of motion: some numerical experiments. Astrophys. J. 69, 73 (1964)

    MathSciNet  Google Scholar 

  9. M. Hénon, A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 50, 69 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. J.L. Ibanez, Y. Pomeau, Simple case of non-periodic (strange) attractor. J. Non-Equilib. Thermodyn. 3, 135 (1978)

    ADS  MATH  Google Scholar 

  11. J. Laskar, Large-scale Chaos in the solar system. Astron. Astrophys. 287, L9 (1994)

    ADS  Google Scholar 

  12. C. Mira, Nonlinear maps from Toulouse colloquium (1973) to Noma’13, in Nonlinear Maps and Their Applications, edited by R. Lopez-Ruiz et al. Springer Proceedings in Mathematics and Statistics, vol. 112 (Springer, Heidelberg, 2014)

    Google Scholar 

  13. R. May, Simple mathematical models with complicated dynamics. Nature 261, 459 (1976)

    Article  ADS  Google Scholar 

  14. L.D. Landau, On the problem of turbulence. Dokl. Akad. Nauk SSSR 44, 339 (1944)

    MathSciNet  Google Scholar 

  15. P. Bergé, Y. Pomeau, C. Vidal, Order Within Chaos: Toward a Deterministic Approach to Turbulence (Wiley, New York, 1984)

    MATH  Google Scholar 

  16. J.P. Gollub, H.L. Swinney, Onset of turbulence in a rotating fluid. Phys. Rev. Lett. 35, 927 (1975)

    Article  ADS  Google Scholar 

  17. J. Maurer, A. Libchaber, Une expérience de Rayleigh-Bénard de geometrie réduite: multiplication, démultiplication et accrochage de fréquences. J. Phys.41, Colloque C3, 51 (1980)

    Google Scholar 

  18. P. Bergé, Intermittency in Rayleigh-Bénard convection. J. Phys. Lett. 41, L341 (1980)

    Article  Google Scholar 

  19. B.J. Alder, T.E. Wainwright, Decay of the velocity autocorrelation function. Phys. Rev. A1, 18 (1970)

    Article  ADS  Google Scholar 

  20. Y. Pomeau, A new kinetic theory for a dense classical gas. Phys. Lett. A. 27A, 601 (1968); A divergence free kinetic equation for a dense Boltzmann gas. Phys. Lett. A 26A, 336 (1968)

    Google Scholar 

  21. Y. Pomeau, P. Manneville, Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys. 74, 189 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  22. M.J. Feigenbaum, Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19, 25 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. P. Coullet, C. Tresser, Iterations d’endomorphismes et groupe de renormalisation. CRAS Série A 287, 577 (1978)

    MathSciNet  MATH  Google Scholar 

  24. Y. Pomeau et al., Intermittent behaviour in the Belousov-Zhabotinsky reaction. J. Phys. Lett. 42, L271 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Pomeau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Coullet, P., Pomeau, Y. (2016). History of Chaos from a French Perspective. In: Skiadas, C. (eds) The Foundations of Chaos Revisited: From Poincaré to Recent Advancements. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-29701-9_6

Download citation

Publish with us

Policies and ethics