Skip to main content

The Kolmogorov Law of Turbulence What Can Rigorously Be Proved? Part II

  • Chapter
  • First Online:
Book cover The Foundations of Chaos Revisited: From Poincaré to Recent Advancements

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

We recall what are the different known solutions for the incompressible Navier-Stokes Equations, in order to fix a suitable functional setting for the probabilistic frame that we use to derive turbulence models, in particular to define the mean velocity and pressure fields, the Reynolds stress and eddy viscosities. Homogeneity and isotropy are discussed within this framework and we give a mathematical proof of the famous \(-5/3\) Kolmogorov law, which is discussed in a numerical simulation performed in a numerical box with a non trivial topography on the ground.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    k already denotes the TKE, and from now also the wavenumber, k =  | k | . This is commonly used in turbulence modeling, although it might sometimes be confusing.

References

  1. D. Apsley, I. Castro, A limited-length-scale k-epsilon model for the neutral and stably-stratified atmospheric boundary layer. Bound.-Layer Meteorol. 83(1), 75–98 (1997)

    Article  ADS  Google Scholar 

  2. G.K. Batchelor, The Theory of Homogeneous Turbulence. Cambridge Monographs on Mechanics and Applied Mathematics (Cambridge University Press, New York, 1959)

    Google Scholar 

  3. H. Beirão da Veiga, On the Ladyzhenskaya-Smagorinsky turbulence model of the Navier-Stokes equations in smooth domains. The regularity problem. J. Eur. Math. Soc. 11(1), 127–167 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. L.C. Berselli, T. Iliescu, W.J. Layton, Mathematics of Large Eddy Simulation of Turbulent Flows. Scientific Computation (Springer, Berlin, 2006)

    MATH  Google Scholar 

  5. E. Bou-Zeid, Large-eddy simulation of neutral atmospheric boundary layer flow over heterogeneous surfaces: blending height and effective surface roughness. Water Resour. Res. 40(2), 1–18 (2004)

    Article  Google Scholar 

  6. J. Boussinesq, Essai sur la théorie des eaux courantes. Mémoires présentés par divers savants à l’Académie des Sciences 23(1), 1–660 (1877)

    MATH  Google Scholar 

  7. F. Brossier, R. Lewandowski, Impact of the variations of the mixing length in a first order turbulent closure system. Math. Model. Numer. Anal. 36(2), 345–372 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Bulíček, R. Lewandowski, J. Málek, On evolutionary Navier-Stokes-Fourier type systems in three spatial dimensions. Comment. Math. Univ. Carolin. 52(1), 89–114 (2011)

    MathSciNet  MATH  Google Scholar 

  9. M. Cannone, Harmonic analysis tools for solving the incompressible Navier-Stokes equations, in Handbook of Mathematical Fluid Dynamics, vol. III (North-Holland, Amsterdam, 2004), pp. 161–244

    MATH  Google Scholar 

  10. T. Chacón-Rebollo, R. Lewandowski, A variational finite element model for large-eddy simulations of turbulent flows. Chin. Ann. Math. Ser. B 34(5), 667–682 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. T. Chacón Rebollo, R. Lewandowski, Mathematical and Numerical Foundations of Turbulence Models and Applications. Modeling and Simulation in Science, Engineering and Technology (Birkhäuser/Springer, New York, 2014)

    Book  MATH  Google Scholar 

  12. J.-Y. Chemin, I. Gallagher, Wellposedness and stability results for the Navier-Stokes equations in R 3. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(2), 599–624 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. F.K. Chow, R.L. Street, M. Xue, J.H. Ferziger, Explicit filtering and reconstruction turbulence modeling for large-eddy simulation of neutral boundary layer flow. J. Atmos. Sci. 62, 2058–2077 (2005)

    Article  ADS  Google Scholar 

  14. P. Constantin, C. Foias, Navier-Stokes Equations. Chicago Lectures in Mathematics (University of Chicago Press, Chicago, IL, 1988)

    Google Scholar 

  15. R. Eymard, T. Gallouet, R. Herbin, Finite volume methods, in Solution of Equation in Rn (Part 3), Techniques of Scientific Computing (Part 3). Handbook of Numerical Analysis, vol. 7 (Elsevier, Amsterdam, 2000), pp. 713–1018

    Google Scholar 

  16. E. Feireisl, Dynamics of Viscous Compressible Fluids. Oxford Lecture Series in Mathematics and its Applications, vol. 26 (Oxford University Press, Oxford, 2004)

    Google Scholar 

  17. J.H. Ferziger, M. Peric, Computational Methods for Fluid Dynamics (Springer Science & Business Media, Berlin, 2012)

    MATH  Google Scholar 

  18. H. Fujita, T. Kato, On the Navier-Stokes initial value problem. i. Arch. Ration. Mech. Anal. 16(4), 269–315 (1964)

    Google Scholar 

  19. T. Gallouët, J. Lederer, R. Lewandowski, F. Murat, L. Tartar, On a turbulent system with unbounded eddy viscosities. Nonlinear Anal. 52(4), 1051–1068 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Germano, Fundamentals of large eddy simulation, in Advanced Turbulent Flow Computations (Udine, 1998). CISM Courses and Lectures, vol. 395 (Springer, Vienna, 2000), pp. 81–130

    Google Scholar 

  21. M. Germano, U. Piomelli, P. Moin, W. Cabot, A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3(7), 1760–1765 (1991)

    Article  ADS  MATH  Google Scholar 

  22. E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4(1–6), 213–231 (1950). doi:10.1002/mana.3210040121. http://dx.doi.org/10.1002/mana.3210040121

    Article  MathSciNet  MATH  Google Scholar 

  23. H. Jasak, Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows (Imperial College London [University of London], London, 1996)

    Google Scholar 

  24. V. John, Large Eddy Simulation of Turbulent Incompressible Flows: Analytical and numerical results for a class of LES models. Lecture Notes in Computational Science and Engineering, vol. 34 (Springer, Berlin, 2004)

    Google Scholar 

  25. A.N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Dokl. Akad. Nauk SSSR 30, 301–305 (1941)

    ADS  MathSciNet  Google Scholar 

  26. B.E. Launder, D.B. Spalding, The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 3(2), 269–289 (1974)

    Article  ADS  MATH  Google Scholar 

  27. J. Lederer, R. Lewandowski, A RANS 3D model with unbounded eddy viscosities. Ann. Inst. H. Poincaré Anal. Non Linéaire 24(3), 413–441 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. P.-G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem. Chapman & Hall/CRC Research Notes in Mathematics, vol. 431 (Chapman & Hall/CRC, Boca Raton, FL, 2002)

    Google Scholar 

  29. J. Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63(1), 193–248 (1934)

    Article  MathSciNet  Google Scholar 

  30. R. Lewandowski, The mathematical analysis of the coupling of a turbulent kinetic energy equation to the Navier-Stokes equation with an eddy viscosity. Nonlinear Anal. 28(2), 393–417 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. R. Lewandowski, Long-time turbulence model deduced from the Navier-Stokes equations. Chin. Ann. Math. Ser. B 36(5), 883–894 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. R. Lewandowski, The Kolmogorov-Taylor Law of Turbulence: What can Rigorously be Proved? Handbook of Applications of Chaos Theory (Taylor and Francis, London, 2016)

    Google Scholar 

  33. R. Lewandowski, G. Pichot, Numerical simulation of water flow around a rigid fishing net. Comput. Methods Appl. Mech. Eng. 196(45–48), 4737–4754 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. D.K. Lilly, Numerical simulation and prediction of atmospheric convection, in Mécanique des Fluides Numérique (Les Houches, 1993) (North-Holland, Amsterdam, 1996), pp. 325–374

    Google Scholar 

  35. J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non linéaires (Dunod, Gauthier-Villars, 1969)

    MATH  Google Scholar 

  36. P.-L. Lions, Mathematical Topics in Fluid Mechanics: Incompressible Models, vol. 1. Oxford Lecture Series in Mathematics and its Applications, vol. 3 (Clarendon Press, Oxford University Press, Oxford, New York, 1996)

    Google Scholar 

  37. N. Marjanovic, S. Wharton, F.K. Chow, Investigation of model parameters for high-resolution wind energy forecasting: case studies over simple and complex terrain. J. Wind Eng. Ind. Aerodyn. 134, 10–24 (2014)

    Article  Google Scholar 

  38. P.J. Mason, Large-eddy simulation of the convective atmospheric boundary layer. J. Atmos. Sci. 46, 1492–1516 (1989)

    Article  ADS  Google Scholar 

  39. T. Michioka, A. Sato, K. Sada, Large-eddy simulation coupled to mesoscale meteorological model for gas dispersion in an urban district. Atmos. Environ. 75(x), 153–162 (2013)

    Article  ADS  Google Scholar 

  40. B. Mohammadi, O. Pironneau, Analysis of the k-Epsilon Turbulence Model. Research in Applied Mathematics (Wiley, Masson, Chichester, 1994)

    Google Scholar 

  41. A.S. Monin, A.M. Obukhov, Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR 24(151), 163–187 (1954)

    Google Scholar 

  42. L. Onsager, Statistical hydrodynamics. Nuovo Cimento (9) 6(Supplemento, 2(Convegno Internazionale di Meccanica Statistica)), 279–287 (1949)

    Google Scholar 

  43. C. Pares Madroñal, Étude mathématique et approximation numérique de quelques problèmes aux limites de la mécanique des fluides incompressibles. Institut National de Recherche en Informatique et en Automatique (INRIA), Rocquencourt (1992)

    Google Scholar 

  44. S.B. Pope, Turbulent Flows (Cambridge University Press, Cambridge, 2000)

    Book  MATH  Google Scholar 

  45. F. Porté-Agel, C. Meneveau, M.B. Parlange, A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer. J. Fluid Mech. 415, 261–284 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. F. Porté-Agel, Y.-T. Wu, H. Lu, R.J. Conzemius, Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms. J. Wind Eng. Ind. Aerodyn. 99(4), 154–168 (2011). The Fifth International Symposium on Computational Wind Engineering

    Google Scholar 

  47. L. Prandtl, über die ausgebildeten turbulenz. Zeitschrift für angewandte Mathematik und Mechanik 5, 136–139 (1925)

    Google Scholar 

  48. L. Prandtl, Prandtl—Essentials of Fluid Mechanics, 3rd edn., vol. 158. Applied Mathematical Sciences (Springer, New York, 2010). Translated from the 12th German edition by Katherine Asfaw and edited by Herbert Oertel, With contributions by P. Erhard, D. Etling, U. Müller, U. Riedel, K.R. Sreenivasan, J. Warnatz

    Google Scholar 

  49. O. Reynolds, An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Philos. Trans. R. Soc. 174, 935–982 (1883)

    Article  MATH  Google Scholar 

  50. P. Sagaut, Large Eddy Simulation for Incompressible Flows, 3rd edn. Scientific Computation (Springer, Berlin, 2006). An introduction, Translated from the 1998 French original, With forewords by Marcel Lesieur and Massimo Germano, With a foreword by Charles Meneveau

    Google Scholar 

  51. J. Smagorinsky, On the application of numerical methods to the solution of systems of partial differential equations arising in meteorology, in Frontiers of Numerical Mathematics (University of Wisconsin Press, Madison, WI, 1960), pp. 107–125

    MATH  Google Scholar 

  52. J. Smagorinsky, General circulation experiments with the primitive equations. Mon. Weather Rev. 93(3), 99 (1963)

    Google Scholar 

  53. G.G. Stokes, On the effect of the internal friction of fluids on the motion of pendulums. Trans. Cambridge Philos. Soc. 9, 8–106 (1851)

    ADS  Google Scholar 

  54. G.I. Taylor, Statistical theory of turbulence. part i-iv. Proc. Roy. Soc. A 151, 421–478 (1935)

    Google Scholar 

  55. R. Temam, Navier-Stokes Equations (AMS Chelsea Publishing, Providence, RI, 2001). Theory and numerical analysis, Reprint of the 1984 edition

    Google Scholar 

  56. V.M. Tikhomirov, in Selected Works of A.N. Kolmogorov: Volume I: Mathematics and Mechanics, ed. by V.M. Tikhomirov (Kluwer Academic Publishers, Dordrecht, Boston, London, 1992)

    Google Scholar 

  57. H.G. Weller, G. Tabor, H. Jasak, C. Fureby, A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12(6), 620–631 (1998)

    Article  ADS  Google Scholar 

  58. B. Zhou, F.K. Chow, Nested large-eddy simulations of the intermittently turbulent stable atmospheric boundary layer over real terrain. J. Atmos. Sci. 71(3), 1021–1039 (2014)

    Article  ADS  Google Scholar 

  59. B. Zhou, J.S. Simon, F.K. Chow, The convective boundary layer in the terra incognita. J. Atmos. Sci. 71, 2545–2563 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Pinier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lewandowski, R., Pinier, B. (2016). The Kolmogorov Law of Turbulence What Can Rigorously Be Proved? Part II. In: Skiadas, C. (eds) The Foundations of Chaos Revisited: From Poincaré to Recent Advancements. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-29701-9_5

Download citation

Publish with us

Policies and ethics