Fundamentals of Mechanism Design

  • Changyan Yi
  • Jun Cai
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)


Mechanism design is a subfield of microeconomics and game theory. It considers how to implement good system-wide solutions to problems that involve multiple self-interested agents [1]. In 2007, the Nobel Prize in economics was awarded to Leonid Hurwicz, Eric Maskin, and Roger Myerson “for having laid the foundations of mechanism design theory.” This indicates the importance and popularity of mechanism design in various areas of applied economics as well as market-driven applications. For instance, mechanism design has been extensively studied in practical engineering problems, such as electronic market design, distributed scheduling, and radio resource allocation.


Electronic Market Design Spectrum Sharing Auction Mechanism Combinatorial Auctions Forward Auction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    N. Nisan, A. Ronen, Algorithmic mechanism design (extended abstract), in Proceedings of ACM STOC (1999), pp. 129–140Google Scholar
  2. 2.
    A. Sen, The theory of mechanism design: an overview. Econ. Pol. Wkly. 42, 8–13 (2007)Google Scholar
  3. 3.
    P.R. Milgrom, Putting Auction Theory to Work (Cambridge University Press, Cambridge, 2004)CrossRefGoogle Scholar
  4. 4.
    S. Sengupta, M. Chatterjee, An economic framework for dynamic spectrum access and service pricing. IEEE/ACM Trans. Netw. 17(4), 1200–1213 (2009)CrossRefGoogle Scholar
  5. 5.
    Y. Zhang, C. Lee et al., Auction approaches for resource allocation in wireless systems: a survey. IEEE Commun. Surv. Tutorials 15(3), 1020–1041 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    P. Klemperer, What really matters in auction design. J. Econ. Perspect. 16(1), 169–189 (2002)CrossRefGoogle Scholar
  7. 7.
    M.J. Osborne, A. Rubinstein, A Course in Game Theory (MIT Press, Cambridge, 1994)zbMATHGoogle Scholar
  8. 8.
    V. Krishna, Auction Theory (Academic, San Diego, 2009)Google Scholar
  9. 9.
    R.B. Myerson, Incentive compatibility and the bargaining problem. Econometrica 47, 61–73 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    N. Nisan, T. Roughgarden et al., Algorithmic Game Theory (Cambridge University Press, Cambridge, 2007)CrossRefzbMATHGoogle Scholar
  11. 11.
    W. Vickrey, Counterspeculation, auctions, and competitive sealed tenders. J. Financ. 16(1), 8–37 (1961)MathSciNetCrossRefGoogle Scholar
  12. 12.
    E.H. Clarke, Multipart pricing of public goods. Public Choice 11(1), 17–33 (1971)CrossRefGoogle Scholar
  13. 13.
    T. Groves, Incentives in teams. Econometrica 41, 617–631 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    A. Pekeč, M.H. Rothkopf, Combinatorial auction design. Manag. Sci. 49(11), 1485–1503 (2003)CrossRefzbMATHGoogle Scholar
  15. 15.
    N. Nisan, A. Ronen, Computationally feasible vcg mechanisms, in Proceedings of ACM EC, vol. 17, no. 20 (2000), pp. 242–252Google Scholar
  16. 16.
    D. Lehmann, L.I. Oćallaghan, Y. Shoham, Truth revelation in approximately efficient combinatorial auctions. J. ACM 49(5), 577–602 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    V. Paulsen, Completely Bounded Maps and Operator Algebras, vol. 78 (Cambridge University Press, Cambridge, 2002)zbMATHGoogle Scholar
  18. 18.
    J. Huang, R.A. Berry, M.L. Honig, Auction-based spectrum sharing. Mob. Netw. Appl. 11(3), 405–418 (2006)CrossRefGoogle Scholar
  19. 19.
    I. Kash, R. Murty, D. Parkes, Enabling spectrum sharing in secondary market auctions. IEEE Trans. Mob. Comput. 13(3), 556–568 (2014)CrossRefGoogle Scholar
  20. 20.
    L. Gao, J. Huang et al., An integrated contract and auction design for secondary spectrum trading. IEEE J. Sel. Areas Commun. 31(3), 581–592 (2013)MathSciNetCrossRefGoogle Scholar
  21. 21.
    H.-J. Lim, M.-G. Song, G.-H. Im, Cooperation-based dynamic spectrum leasing via multi-winner auction of multiple bands. IEEE Trans. Commun. 61(4), 1254–1263 (2013)CrossRefGoogle Scholar
  22. 22.
    S.-C. Zhan, S.-C. Chang et al., Truthful auction mechanism design for short-interval secondary spectrum access market. IEEE Trans. Wirel. Commun. 13(3), 1471–1481 (2014)CrossRefGoogle Scholar
  23. 23.
    T. Chen, S. Zhong, Truthful auctions for continuous spectrum with variable bandwidths. IEEE Trans. Wirel. Commun. 13(2), 1116–1128 (2014)MathSciNetCrossRefGoogle Scholar
  24. 24.
    O. Naparstek, A. Leshem, Fully distributed optimal channel assignment for open spectrum access. IEEE Trans. Signal Process. 62(2), 283–294 (2014)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Z. Zheng, G. Chen, A strategy-proof combinatorial heterogeneous channel auction framework in noncooperative wireless networks. IEEE Trans. Mobile Comput. 14(6), 1123–1137 (2015)MathSciNetCrossRefGoogle Scholar
  26. 26.
    C. Li, Z. Liu et al., Two dimension spectrum allocation for cognitive radio networks. IEEE Trans. Wirel. Commun. 13(3), 1410–1423 (2014)CrossRefGoogle Scholar
  27. 27.
    F. Wu, Q. Huang et al., Towards privacy preservation in strategy-proof spectrum auction mechanisms for noncooperative wireless networks. IEEE/ACM Trans. Netw. 23(4), 1271–1285 (2015)CrossRefGoogle Scholar
  28. 28.
    F. Rebecchi, M. Dias de Amorim et al., Data offloading techniques in cellular networks: a survey. IEEE Commun. Surv. Tutorials 17(2), 580–603 (2015)CrossRefGoogle Scholar
  29. 29.
    W. Khan, Y. Xiang et al., Mobile phone sensing systems: a survey. IEEE Commun. Surv. Tutorials 15(1), 402–427 (2013)CrossRefGoogle Scholar
  30. 30.
    X. Zhuo, W. Gao et al., An incentive framework for cellular traffic offloading. IEEE Trans. Mob. Comput. 13(3), 541–555 (2014)CrossRefGoogle Scholar
  31. 31.
    W. Dong, S. Rallapalli et al., iDEAL: incentivized dynamic cellular offloading via auctions. IEEE/ACM Trans. Netw. 22(4), 1271–1284 (2014)CrossRefGoogle Scholar
  32. 32.
    I. Koutsopoulos, Optimal incentive-driven design of participatory sensing systems, in Proceedings of IEEE INFOCOM (2013), pp. 1402–1410Google Scholar
  33. 33.
    R.B. Myerson, Optimal auction design. Math. Oper. Res. 6(1), 58–73 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Z. Feng, Y. Zhu et al., TRAC: truthful auction for location-aware collaborative sensing in mobile crowdsourcing, in Proceedings of IEEE INFOCOM (2014), pp. 1231–1239Google Scholar
  35. 35.
    X. Zhou, H. Zheng, TRUST: a general framework for truthful double spectrum auctions, in Proceedings of IEEE INFOCOM (2009), pp. 999–1007Google Scholar
  36. 36.
    X. Feng, Y. Chen et al., TAHES: a truthful double auction mechanism for heterogeneous spectrums. IEEE Trans. Wirel. Commun. 11(11), 4038–4047 (2012)CrossRefGoogle Scholar
  37. 37.
    L. Gao, Y. Xu, X. Wang, MAP: multiauctioneer progressive auction for dynamic spectrum access. IEEE Trans. Mob. Comput. 10(8), 1144–1161 (2011)CrossRefGoogle Scholar
  38. 38.
    W. Wang, B. Liang, B. Li, Designing truthful spectrum double auctions with local markets. IEEE Trans. Mob. Comput. 13(1), 75–88 (2014)CrossRefGoogle Scholar
  39. 39.
    D. Yang, X. Zhang, G. Xue, Promise: a framework for truthful and profit maximizing spectrum double auctions, in Proceedings of IEEE INFOCOM (2014), pp. 109–117Google Scholar
  40. 40.
    Y. Chen, J. Zhang et al., TAMES: a truthful double auction for multi-demand heterogeneous spectrums. IEEE Trans. Parallel Distrib. Syst. 25(11), 3012–3024 (2014)CrossRefGoogle Scholar
  41. 41.
    W. Dong, S. Rallapalli et al., Double auctions for dynamic spectrum allocation, in Proceedings of IEEE INFOCOM (2014), pp. 709–717Google Scholar
  42. 42.
    G. Sun, X. Feng et al., Coalitional double auction for spatial spectrum allocation in cognitive radio networks. IEEE Trans. Wirel. Commun. 13(6), 3196–3206 (2014)CrossRefGoogle Scholar
  43. 43.
    L. Deek, X. Zhou et al., To preempt or not: tackling bid and time-based cheating in online spectrum auctions, in Proceedings of IEEE INFOCOM (2011), pp. 2219–2227Google Scholar
  44. 44.
    S. Wang, P. Xu et al., Toda: truthful online double auction for spectrum allocation in wireless networks, in Proceedings of IEEE DySPAN (2010), pp. 1–10Google Scholar
  45. 45.
    S. Sodagari, A. Attar, S. Bilen, On a truthful mechanism for expiring spectrum sharing in cognitive radio networks. IEEE J. Sel. Areas Commun. 29(4), 856–865 (2011)CrossRefGoogle Scholar
  46. 46.
    P. Xu, X.-Y. Li, TOFU: semi-truthful online frequency allocation mechanism for wireless networks. IEEE/ACM Trans. Netw. 19(2), 433–446 (2011)CrossRefGoogle Scholar
  47. 47.
    S. Li, Z. Zheng et al., Maximizing social welfare in operator-based cognitive radio networks under spectrum uncertainty and sensing inaccuracy, in Proceedings of IEEE INFOCOM (2013), pp. 953–961Google Scholar
  48. 48.
    H. Li, C. Wu, Z. Li, Socially-optimal online spectrum auctions for secondary wireless communication, in Proceedings of IEEE INFOCOM (2015), pp. 2047–2055Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Changyan Yi
    • 1
  • Jun Cai
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of ManitobaWinnipegCanada

Personalised recommendations