Skip to main content

Application of a Conceptual Nanomedical Platform to Facilitate the Mapping of the Human Brain: Survey of Cognitive Functions and Implications

  • Chapter
  • First Online:
The Physics of the Mind and Brain Disorders

Part of the book series: Springer Series in Cognitive and Neural Systems ((SSCNS,volume 11))

Abstract

This chapter will explore the application of a conceptual nanomedical entity called the Vascular Cartographic Scanning Nanodevice (VCSN) to facilitate the ultrahigh resolution mapping of the human brain. The VCSN would comprise a highly sophisticated and completely autonomous ∼1 μm in diameter nanomedical device, whose purpose would be to safely ingress, scan and image the entire human vasculature (down to the level of the smallest ∼Ø3 μm lumen capillaries), followed by egress. In operation, likely thousands to tens of thousands of VCSN units would work in parallel to transmit cumulatively scanned spatial data to “outbody” computers, which would render the entire vasculature of a patient in high resolution three dimensional format. This capability would enable physicians and surgeons to “fly-through” all imaged areas via a joystick and computer display, generate full body holographic renderings, or inspect the entire vasculature in intimate detail through virtual reality. The human brain contains close to 100 billion capillaries within the neocortex, which serve to deliver a dedicated blood supply to each of the ∼23.9 × 109 individual neurons that support approximately 164 trillion synapses. Hence, it is plausible that the spatial coordinates of every neuron within the neocortex might be inferred from VCSN scanning data, to create an ultrahigh density map of the brain. This map might have significant utility and implications for the diagnosis, and treatment of various cognitive disorders, and potentially, toward the development of future cognitive augmentations, including the capacity for enhanced learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aanerud J, Borghammer P, Chakravarty MM, Vang K, Rodell AB, Jonsdottir KY et al (2012) Brain energy metabolism and blood flow differences in healthy aging. J Cereb Blood Flow Metab 32:1177–1187

    Article  CAS  Google Scholar 

  • Andersen BB, Korbo L, Pakkenberg B (1992) A quantitative study of the human cerebellum with unbiased stereological techniques. J Comp Neurol 326(4):549–560

    Article  CAS  Google Scholar 

  • Andrade-Moraes CH, Oliveira-Pinto AV, Castro-Fonseca E, da Silva CG, Guimarães DM, Szczupak D, Parente-Bruno DR, Carvalho LR, Polichiso L, Gomes BV, Oliveira LM, Rodriguez RD, Leite RE, Ferretti-Rebustini RE, Jacob-Filho W, Pasqualucci CA, Grinberg LT, Lent R (2013) Cell number changes in Alzheimer’s disease relate to dementia, not to plaques and tangles. Brain 136(Pt 12):3738–3752

    Article  Google Scholar 

  • Arbor SC, La Fontaine M, Cumbay M (2016) Amyloid-beta Alzheimer targets – protein processing, lipid rafts, and amyloid-beta pores. Yale J Biol Med 89(1):5–21. eCollection 2016

    CAS  Google Scholar 

  • Arendt T, Stieler JT, Holzer M (2016) Tau and tauopathies. Brain Res Bull 126(Pt 3):238–292

    Article  CAS  Google Scholar 

  • Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA (2010) Glial and neuronal control of brain blood flow. Nature 468:232–243

    Article  CAS  Google Scholar 

  • Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, Jacob Filho W, Lent R, Herculano-Houzel S (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513(5):532–541

    Article  Google Scholar 

  • Bahney J, von Bartheld CS (2014) Validation of the isotropic fractionator: comparison with unbiased stereology and DNA extraction for quantification of glial cells. J Neurosci Methods 222:165–174

    Article  CAS  Google Scholar 

  • Balado M, Franke E (1937) Das Corpus Geniculatum Externum. In: Foerster O, Rudin E, Spatz H (eds) Monographien aus dem Gesamtgebiete der Neurologie und Psychiatrie. Julius Springer, Berlin, pp 1–118

    Google Scholar 

  • Barrett L, Henzi SP, Lusseau D (2012) Taking sociality seriously: the structure of multi-dimensional social networks as a source of information for individuals. Phil Trans R Soc B 367:2108–2118

    Article  Google Scholar 

  • Barton RA (2012) Embodied cognitive evolution and the cerebellum. Philos Trans R Soc Lond B Biol Sci 367(1599):2097–2107

    Article  Google Scholar 

  • Bellebaum C, Daum I (2011) Mechanisms of cerebellar involvement in associative learning. Cortex 47:128–136

    Article  Google Scholar 

  • Blinkov SM, Glezer II (1968) The human brain in figures and tables. A quantitative handbook. Plenum Press, New York

    Google Scholar 

  • Boehm FJ (2013) Nanomedical device and systems design – challenges, possibilities, visions. CRC Press, Boca Raton

    Google Scholar 

  • Borroto-Escuela DO, Agnati LF, Bechter K, Jansson A, Tarakanov AO, Fuxe K (2015) The role of transmitter diffusion and flow versus extracellular vesicles in volume transmission in the brain neural-glial networks. Philos Trans R Soc Lond B Biol Sci 370(1672)

    Google Scholar 

  • Bortolato B, Carvalho AF, Soczynska JK, Perini GI, McIntyre RS (2015) The involvement of TNF-α in cognitive dysfunction associated with major depressive disorder: an opportunity for domain specific treatments. Curr Neuropharmacol 13(5):558–576

    Article  CAS  Google Scholar 

  • Brotherson S (n.d.) Understanding brain development in young children, FS-609. NDSU Extension Service. April 2009

    Google Scholar 

  • Burmester T, Weich B, Reinhardt S, Hankeln T (2000) A vertebrate globin expressed in the brain. Nature 407:520–523

    Article  CAS  Google Scholar 

  • Bushong EA, Martone ME, Jones YZ, Ellisman MH (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22(1):183–192

    Article  CAS  Google Scholar 

  • Carulli D, Kwok JC, Pizzorusso T (2016) Perineuronal nets and CNS plasticity and repair. Neural Plast 2016:4327082

    Article  Google Scholar 

  • Cassot F, Lauwers F, Lorthois S, Puwanarajah P, Cances-Lauwers V, Duvernoy H (2010) Branching patterns for arterioles and venules of the human cerebral cortex. Brain Res 1313:62–78

    Article  CAS  Google Scholar 

  • Cauli B, Hamel E (2010) Revisiting the role of neurons in neurovascular coupling. Front Neuroenergetics 2:9

    Article  Google Scholar 

  • Chung WS, Allen NJ, Eroglu C (2015) Astrocytes control synapse formation, function, and elimination. Cold Spring Harb Perspect Biol 7(9):a020370

    Article  Google Scholar 

  • Colibazzi T et al (2010) Neural systems subserving valence and arousal during the experience of induced emotions. Emotion 10:377–389

    Article  Google Scholar 

  • Collins CE, Young NA, Flaherty DK, Airey DC, Kaas JH (2010) A rapid and reliable method of counting neurons and other cells in brain tissue: a comparison of flow cytometry and manual counting methods. Front Neuroanat 4:5

    Google Scholar 

  • Coombs JL, Van Der List D, Chalupa LM (2007) Morphological properties of mouse retinal ganglion cells during postnatal development. J Comp Neurol 503:803–814

    Article  Google Scholar 

  • Diano S (2015) The role of synaptic plasticity in relation to energy intake (glucose sensing) in the hypothalamus. Research Symposium, Physiology 2015 (Cardiff, UK). Proc Physiol Soc 34:SA052

    Google Scholar 

  • Dicke U, Roth G (2016) Neuronal factors determining high intelligence. Philos Trans R Soc Lond B Biol Sci 371(1685):20150180

    Article  Google Scholar 

  • Domschke AM (2010) Continuous non-invasive ophthalmic glucose sensor for diabetics. Chimia (Aarau) 64(1–2):43–44

    Article  CAS  Google Scholar 

  • Domschke A, March WF, Kabilan S, Lowe C (2006) Initial clinical testing of a holographic non-invasive contact lens glucose sensor. Diabetes Technol Ther 8(1):89–93

    Article  CAS  Google Scholar 

  • Donaldson HH (1895) The growth of the brain. Scribner, Chicago

    Google Scholar 

  • Drachman DA (2005) Do we have brain to spare? Neurology 64:2004–2005

    Article  Google Scholar 

  • Duvernoy HM, Delon S, Vannson JL (1981) Cortical blood vessels of the human brain. Brain Res Bull 7:519–579

    Article  CAS  Google Scholar 

  • El-Bouri WK, Payne SJ (2016) A statistical model of the penetrating arterioles and venules in the human cerebral cortex. Microcirculation 23(7):580–590

    Article  Google Scholar 

  • Eliasmith C, Anderson CH (2003) Neural Engineering: computation, representation and dynamics in neurobiological systems. MIT Press, Cambridge, MA

    Google Scholar 

  • Erskine L, Herrera E (2014) Connecting the retina to the brain. ASN Neuro 6(6)

    Google Scholar 

  • Eugene AR, Masiak J (2015) The neuroprotective aspects of sleep. MEDtube Sci 3(1):35–40

    Google Scholar 

  • Falkenburger BH, Saridaki T, Dinter E (2016) Cellular models for Parkinson’s disease. J Neurochem 139(Suppl 1):121–130

    Article  CAS  Google Scholar 

  • Farah MJ, Illes J, Cook-Deegan R, Gardner H, Kandel E, King P, Parens E, Sahakian B, Wolpe PR (2004) Neurocognitive enhancement: what can we do and what should we do? Nat Rev Neurosci 5(5):421–425

    Article  CAS  Google Scholar 

  • Fernandez-Klett F, Offenhauser N, Dirnagl U, Priller J, Lindauer U (2010) Pericytes in capillaries are contractile in vivo, but arterioles mediate functional hyperemia in the mouse brain. Proc Natl Acad Sci 107:22290–22295

    Article  CAS  Google Scholar 

  • Fiez JA (2016) The cerebellum and language: persistent themes and findings. Brain Lang 161:1–3

    Article  Google Scholar 

  • Filosa JA, Iddings JA (2013) Astrocyte regulation of cerebral vascular tone. Am J Physiol Heart Circ Physiol 305:H609–H619

    Article  CAS  Google Scholar 

  • Fitch WT et al (2011) Front Evol Neurosci 3:9

    Article  Google Scholar 

  • Foley LE, Gegear RJ, Reppert SM (2011) Human cryptochrome exhibits light-dependent magnetosensitivity. Nat Commun 2:356

    Article  Google Scholar 

  • Fonseca R (2013) Asymmetrical synaptic cooperation between cortical and thalamic inputs to the amygdale. Neuropsychopharmacology 38(13):2675–2687

    Article  Google Scholar 

  • Forster SE, Brown JW (2011) Medial prefrontal cortex predicts and evaluates the timing of action outcomes. NeuroImage 55:253–265

    Article  Google Scholar 

  • Frackowiak RS, Herold S, Petty RK, Morgan-Hughes JA (1988) The cerebral metabolism of glucose and oxygen measured with positron tomography in patients with mitochondrial diseases. Brain 111(Pt 5):1009–1024

    Article  Google Scholar 

  • Freitas RA Jr (1999) Nanomedicine, volume I: basic capabilities. Landes Bioscience, Georgetown

    Google Scholar 

  • Freitas C, Farzan F, Pascual-Leone A (2013) Assessing brain plasticity across the lifespan with transcranial magnetic stimulation: why, how, and what is the ultimate goal? Front Neurosci 7:42

    Article  Google Scholar 

  • Friedman RA (2016) Return to the teenage brain. The New York Times. Oct. 8. http://www.nytimes.com/2016/10/09/opinion/return-to-the-teenage-brain.html

  • Froestl W, Muhs A, Pfeifer A (2012) Cognitive enhancers (Nootropics). Part 1: drugs interacting with receptors. Part 2: drugs interacting with enzymes. Part 3: drugs interacting with targets other than receptors or enzymes. Disease-modifying drugs. J Alzheimers Dis 32(4):793–887

    Article  CAS  Google Scholar 

  • Fuxe K, Borroto-Escuela DO (2016) Volume transmission and receptor-receptor interactions in heteroreceptor complexes: understanding the role of new concepts for brain communication. Neural Regen Res 11(8):1220–1223

    Article  CAS  Google Scholar 

  • Fuxe K, Borroto-Escuela DO, Ciruela F, Guidolin D, Agnati LF (2014) Receptor-receptor interactions in heteroreceptor complexes: a new principle in biology. Focus on their role in learning and memory. Neurosci Discov 2:6

    Article  Google Scholar 

  • García-Marín V, Blazquez-Llorca L, Rodriguez JR, Gonzalez-Soriano J, De Felipe J (2010) Differential distribution of neurons in the gyral white matter of the human cerebral cortex. J Comp Neurol 518(23):4740–4759

    Article  Google Scholar 

  • Gazzola V, Keyser C (2009) The observation and execution of actions share motor and somatosensory voxels in all tested subjects: single-subject analyses of unsmoothed fMRI data. Cereb Cortex 19:1239–1255

    Article  Google Scholar 

  • Gervain J, Vines BW, Chen LM, Seo RJ, Hensch TK, Werker JF, Young AH (2013) Valproate reopens critical-period learning of absolute pitch. Front Syst Neurosci 7:102

    Article  CAS  Google Scholar 

  • Hadjistassou C, Bejan A, Ventikos Y (2015) Cerebral oxygenation and optimal vascular brain organization. J R Soc Interface 12(107)

    Google Scholar 

  • Halassa MM, Fellin T, Takano H, Dong JH, Haydon PG (2007) Synaptic islands defined by the territory of a single astrocyte. J Neurosci 27(24):6473–6477

    Article  CAS  Google Scholar 

  • Hall CN, Klein-Flugge MC, Howarth C, Attwell D (2012) Oxidative phosphorylation, not glycolysis, powers presynaptic and postsynaptic mechanisms underlying brain information processing. J Neurosci 32:8940–8951

    Article  CAS  Google Scholar 

  • Hamilton NB (2010) Pericyte-mediated regulation of capillary diameter: a component of neurovascular coupling in health and disease. Front Neuroenergetics 2:pii:5

    Google Scholar 

  • Hartline DK, Colman DR (2007) Rapid conduction and the evolution of giant axons and myelinated fibers. Curr Biol 17(1):R29–R35

    Article  CAS  Google Scholar 

  • Hayashi N, Green BA, Gonzalez-Carvajal M, Mora J, Veraa RP (1983) Local blood flow, oxygen tension, and oxygen consumption in the rat spinal cord. Part 1: oxygen metabolism and neuronal function. J Neurosurg 58:516–525

    Article  CAS  Google Scholar 

  • Herculano-Houzel S (2011) The isotropic fractionator: a fast, reliable method to determine numbers of cells in the brain. Neuromethods 67:391–403

    Article  Google Scholar 

  • Herculano-Houzel S, Lent R (2005) Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain. J Neurosci 25(10):2518–2521

    Article  CAS  Google Scholar 

  • Hodgkin AL (1954) A note on conduction velocity. J Physiol 125(1):221–224

    Article  CAS  Google Scholar 

  • Hogan MJ, Staff RT, Bunting BP, Murray AD, Ahearn TS, Deary IJ, Whalley LJ (2011) Cerebellar brain volume accounts for variance in cognitive performance in older adults. Cortex 47: 441–450

    Article  Google Scholar 

  • Howarth C, Gleeson P, Attwell D (2012) Updated energy budgets for neural computation in the neocortex and cerebellum. J Cereb Blood Flow Metab 32:1222–1232

    Article  CAS  Google Scholar 

  • Iadecola C, Nedergaard M (2007) Glial regulation of the cerebral microvasculature. Nat Neurosci 10:1369–1376

    Article  CAS  Google Scholar 

  • Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 4(147):147ra111

    Article  Google Scholar 

  • Ito M (2008) Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci 9:304–313

    Article  CAS  Google Scholar 

  • Izquierdo I, Medina JH, Bianchin M, Walz R, Zanatta MS, Da Silva RC, Bueno e Silva M, Ruschel AC, Paczko N (1993) Memory processing by the limbic system: role of specific neurotransmitter systems. Behav Brain Res 58(1–2):91–98

    Article  CAS  Google Scholar 

  • Jackson PL, Meltzoff AN, Decety J (2005) Neural circuits involved in imitation and perspective-taking. NeuroImage 31:429–439

    Article  Google Scholar 

  • Jessen NA, Munk AS, Lundgaard I, Nedergaard M (2015) The glymphatic system: a beginner’s guide. Neurochem Res 40(12):2583–2599

    Article  CAS  Google Scholar 

  • Jueptner M, Weiller C (1995) Review: does measurement of regional cerebral blood flow reflect synaptic activity? Implications for PET and fMRI. Neuroimage 2(2):148–156

    Article  CAS  Google Scholar 

  • Karlsen AS, Pakkenberg B (2011) Total numbers of neurons and glial cells in cortex and basal ganglia of aged brains with Down syndrome – a stereological study. Cereb Cortex 21: 2519–2524

    Article  Google Scholar 

  • Kaufman SK, Sanders DW, Thomas TL, Ruchinskas AJ, Vaquer-Alicea J, Sharma AM, Miller TM, Marc I (2016) Diamond. Tau prion strains dictate patterns of cell pathology, progression rate, and regional vulnerability in vivo. Neuron 92(4):796–812

    Article  CAS  Google Scholar 

  • Kety SS, Skenkin HA, Schmidt CF (1948) The effects of increased intracranial pressure on cerebral circulatory functions in man. J Clin Invest 27(4):493–499

    Article  Google Scholar 

  • Kiessling MC, Büttner A, Butti C, Müller-Starck J, Milz S, Hof PR, Frank HG, Schmitz C (2014) Cerebellar granule cells are generated postnatally in humans. Brain Struct Funct 219(4):1271–1286

    Article  Google Scholar 

  • Koch C (2004) The quest for consciousness. A neurobiological approach. Roberts & Company, Englewood

    Google Scholar 

  • Kravitz DJ, Saleem KS, Baker CI, Mishkin M (2011) A new neural framework for visuospatial processing. Nat Rev Neurosci 12(4):217–230

    Article  CAS  Google Scholar 

  • Lam RW, Kennedy SH, Mclntyre RS, Khullar A (2014) Cognitive dysfunction in major depressive disorder: effects on psychosocial functioning and implications for treatment. Can J Psychiatry 59(12):649–654

    Article  Google Scholar 

  • Lange W (1975) Cell number and cell density in the cerebellar cortex of man and some other mammals. Cell Tissue Res 157:115–124

    Article  CAS  Google Scholar 

  • Lauritzen M, Mathiesen C, Schaefer K, Thomsen KJ (2012) Neuronal inhibition and excitation, and the dichotomic control of brain hemodynamic and oxygen responses. NeuroImage 62:1040–1050

    Article  Google Scholar 

  • Lecrux C, Hamel E (2011) The neurovascular unit in brain function and disease. Acta Physiol(Oxf) 203:47–59

    Article  CAS  Google Scholar 

  • Lefebvre L (2012) Primate encephalization. Prog Brain Res 195:393–412

    Article  Google Scholar 

  • Leggio MG, Chiricozzi FR, Clausi S, Tedesco AM, Molinari M (2011) The neuropsychological profile of cerebellar damage: the sequencing hypothesis. Cortex 47:137–144

    Article  Google Scholar 

  • Leiner HC (2010) Solving the mystery of the human cerebellum. Neuropsychol Rev 20:229–235

    Article  Google Scholar 

  • Leithner C, Royl G (2014) The oxygen paradox of neurovascular coupling. J Cereb Blood Flow Metab 34(1):19–29

    Article  CAS  Google Scholar 

  • Lewkowicz DJ, Ghazanfar AA (2009) The emergence of multisensory systems through perceptual narrowing. Trends Cogn Sci 13(11):470–478

    Article  Google Scholar 

  • Liu L, Glaister J, Sun X, Carass A, Tran TD, Prince JL (2016) Segmentation of thalamus from MR images via task-driven dictionary learning. Proc SPIE Int Soc Opt Eng 27:9784

    Google Scholar 

  • Madsen PL, Cruz NF, Sokoloff L, Dienel GA (1999) Cerebral oxygen/glucose ratio is low during sensory stimulation and rises above normal during recovery: excess glucose consumption during stimulation is not accounted for by lactate efflux from or accumulation in brain tissue. J Cereb Blood Flow Metab 19:393–400

    Article  CAS  Google Scholar 

  • Mancini M, Morra VB, Di Donato O, Maglio V, Lanzillo R, Liuzzi R, Salvatore E, Brunetti A, Iaccarino V, Salvatore M (2012) Multiple sclerosis: cerebral circulation time. Radiology 262(3):947–955

    Article  Google Scholar 

  • Mandolesi L, Leggio MG, Graziano A, Neri P, Petrosini L (2001) Cerebellar contribution to spatial event processing: involvement in procedural and working memory components. Eur J Neurosci 14(12):2011–2022

    Article  CAS  Google Scholar 

  • Mann DMA (1986) Dopamine neurons of the vertebrate brain: some aspects of anatomy and pathology. In: Winlow W, Markestein R (eds) The neurobiology of dopamine systems. Manchester University Press, Manchester, pp 87–103

    Google Scholar 

  • Messerli MA, Graham DM (2011) Extracellular electrical fields direct wound healing and regeneration. Biol Bull 221(1):79–92

    Article  CAS  Google Scholar 

  • Mishra A (2017) Binaural blood flow control by astrocytes: listening to synapses and the vasculature. J Physiol 595(6):1885–1902

    Article  CAS  Google Scholar 

  • Mohammad Haniff MA, Lee HW, Bien DC, Teh AS, Azid IA (2014) Highly sensitive integrated pressure sensor with horizontally oriented carbon nanotube network. Nanoscale Res Lett 9(1):49

    Article  Google Scholar 

  • Mouton PR, Pakkenberg B, Gundersen HJ, Price DL (1994) Absolute number and size of pigmented locus coeruleus neurons in young and aged individuals. J Chem Neuroanat 7:185–190

    Article  CAS  Google Scholar 

  • Ogata K, Kosaka T (2002) Structural and quantitative analysis of astrocytes in the mouse hippocampus. Neuroscience 113(1):221–233

    Article  CAS  Google Scholar 

  • Ohm TG, Busch C, Bohl J (1997) Unbiased estimation of neuronal numbers in the human nucleus coeruleus during aging. Neurobiol Aging 18:393–399

    Article  CAS  Google Scholar 

  • Pakkenberg B, Gundersen HJ (1989) New stereological method for obtaining unbiased and efficient estimates of total nerve cell number in human brain areas. Exemplified by the mediodorsal thalamic nucleus in schizophrenics. APMIS 97(8):677–681

    Article  CAS  Google Scholar 

  • Pakkenberg B, Gundersen HJ (1997) Neocortical neuron number in humans: effect of sex and age. J Comp Neurol 384(2):312–320

    Article  CAS  Google Scholar 

  • Pakkenberg B, Pelvig D, Marner L et al (2003) Aging and the human neocortex. Exp Gerontol 38:95–99

    Article  Google Scholar 

  • Pardridge WM (2011) Drug transport in brain via the cerebrospinal fluid. Fluids Barriers CNS 8(1):7

    Article  Google Scholar 

  • Peppiatt CM, Howarth C, Mobbs P, Attwell D (2006) Bidirectional control of CNS capillary diameter by pericytes. Nature 443:700–704

    Article  CAS  Google Scholar 

  • Petkov CI, Jarvis ED (2012) Birds, primates, and spoken language origins: behavioral phenotypes and neurobiological substrates. Front Evol Neurosci 4:12

    Article  Google Scholar 

  • Phillips ML, Chase HW, Sheline YI, Etkin A, Almeida JR, Deckersbach T, Trivedi MH (2015) Identifying predictors, moderators, and mediators of antidepressant response in major depressive disorder: neuroimaging approaches. Am J Psychiatry 172(2):124–138

    Article  Google Scholar 

  • Pirotte B, Voordecker P, Neugroschl C, Baleriaux D, Wikler D, Metens T, Denolin V, Joffroy A, Massager N, Brotchi J, Levivier M (2008) Combination of functional magnetic resonance imaging-guided neuronavigation and intraoperative cortical brain mapping improves targeting of motor cortex stimulation in neuropathic pain. Neurosurgery 62(6 Suppl 3):941–956

    Article  Google Scholar 

  • Poulsen PH, Smith DF, Ostergaard L, Danielsen EH, Gee A, Hansen SB et al (1997) In vivo estimation of cerebral blood flow, oxygen consumption and glucose metabolism in the pig by [15O]water injection, [15O]oxygen inhalation and dual injections of [18F]fluorodeoxyglucose. J Neurosci Methods 77:199–209

    Article  CAS  Google Scholar 

  • Ramnani N, Miall CR (2004) A system in the human brain for predicting the actions of others. Nat Neurosci 7:85

    Article  CAS  Google Scholar 

  • Richter A, Paschew G, Klatt S, Lienig J, Arndt KF, Adler HJP (2008) Review on hydrogel-based pH sensors and microsensors. Sensors 8(1):561–581

    Article  CAS  Google Scholar 

  • Rochefort C, Arabo A, Andre M, Poucet B, Save E, Rondi-Reig L (2011) Cerebellum shapes hippocampal spatial code. Science 334:385–389

    Article  CAS  Google Scholar 

  • Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10(Suppl):S10–S17

    Article  Google Scholar 

  • Schmahmann JD, Sherman JC (1998) The cerebellar cognitive affective syndrome. Brain 121:561–579

    Article  Google Scholar 

  • Schmidt TM, Do MT DD, Lucas R, Hattar S, Matynia A (2011) Melanopsin-positive intrinsically photosensitive retinal ganglion cells: From form to function. J Neurosci 31:16094–16101

    Article  CAS  Google Scholar 

  • Schroder KF, Hopf A, Lange H, Thorner G (1975) Morphometrical-statistical structure analysis of human striatum, pallidum and subthalamic nucleus. J Hirnforsch 16:333–350

    CAS  Google Scholar 

  • Schulte-Ruther M, Markowitsch HJ, Fink GR, Piefke M (2007) Mirror neuron and theory of mind mechanisms involved in face-to-face interactions: a functional magnetic resonance imaging approach to empathy. J Cogn Neurosci 19:1354–1372

    Article  Google Scholar 

  • Selemon LD, Begovic A (2007) Stereologic analysis of the lateral geniculate nucleus of the thalamus in normal and schizophrenic subjects. Psychiatry Res 151:1–10

    Article  CAS  Google Scholar 

  • Shukla DK, Keehn B, Lincoln AJ, Muller RA (2010) White matter compromise of callosal and subcortical fiber tracts in children with autism spectrum disorder: a diffusion tensor imaging study. J Am Acad Child Adol Psych 49:1269–1278

    Google Scholar 

  • Siesjö BK (1978) Brain energy metabolism. Wiley, Bath

    Google Scholar 

  • Singer T, Seymour B, O’Doherty J, Kaube H, Dolan RJ, Frith CD (2004) Empathy for pain involves affective but not sensory components of pain. Science 303:1157–1162

    Article  CAS  Google Scholar 

  • Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35

    Article  Google Scholar 

  • Stein BE, Rowland BA (2011) Organization and plasticity in multisensory integration: early and late experience affects its governing principles. Prog Brain Res 191:145–163

    Article  Google Scholar 

  • Steinlin M (2008) Cerebellar disorders in childhood: cognitive problems. Cerebellum 7:607–610

    Article  Google Scholar 

  • Sterelny K (2012) Language, gesture, skill: the co-evolutionary foundations of language. Phil Trans R Soc B 367:2141–2151

    Article  Google Scholar 

  • Strick PL, Dum RP, Fiez JA (2009) Cerebellum and nonmotor function. Annu Rev Neurosci 32:413–434

    Article  CAS  Google Scholar 

  • Takalo M, Salminen A, Soininen H, Hiltunen M, Haapasalo A (2013) Protein aggregation and degradation mechanisms in neurodegenerative diseases. Am J Neurodegener Dis 2(1):1–14

    Google Scholar 

  • Tavano A, Borgatti R (2010) Evidence for a link among cognition, language and emotion in cerebellar malformations. Cortex 46:907–918

    Article  Google Scholar 

  • Thörner G, Lange H, Hopf A (1975) Morphometrical-statistical structure analysis of human striatum, pallidus and subthalamic nucleus. II. Globus pallidus. J Hirnforsch 16:401–413

    Google Scholar 

  • Powell TPS, Guillery RW, Cowan WM (1957) A quantitative study of the fornix mamillo-thalamic system. J Anat 91:419–435

    CAS  Google Scholar 

  • Underwood E (2013) Neuroscience. Sleep: the brain’s housekeeper? Science 342:301

    Article  CAS  Google Scholar 

  • von Bartheld CS, Bahney J, Herculano-Houzel S (2016) The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting. J Comp Neurol 524(18):3865–3895

    Article  Google Scholar 

  • Velasco-Aguirre et al (2015) Int J Nanomedicine 10:4919–4936

    CAS  Google Scholar 

  • Wang J, Jiu J, Nogi M, Sugahara T, Nagao S, Koga H, He P, Suganuma K (2015) A highly sensitive and flexible pressure sensor with electrodes and elastomeric interlayer containing silver nanowires. Nanoscale 7(7):2926–2932

    Article  CAS  Google Scholar 

  • Weaver IC, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR, Dymov S, Szyf M, Meaney MJ (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7(8):847–854

    Article  CAS  Google Scholar 

  • Weise CM, Mouton PR, Eschbacher J, Coons SW, Krakoff J (2015) A post-mortem stereological study of striatal cell number in human obesity. Obesity 23:100–104

    Article  Google Scholar 

  • Wemmie JA (2011) Neurobiology of panic and pH chemosensation in the brain. Dialogues Clin Neurosci 13(4):475–483

    Article  Google Scholar 

  • Whitlock JR, Heynen AJ, Shuler MG, Bear MF (2006) Learning induces long-term potentiation in the hippocampus. Science 313(5790):1093–1097

    Article  CAS  Google Scholar 

  • Wood KH, Ver Hoef LW, Knight DC (2012) Neural mechanisms underlying the conditioned diminution of the unconditioned fear response. Neuroimage 60(1):787–799

    Article  Google Scholar 

  • Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M et al (2013) Sleep drives metabolite clearance from the adult brain. Science 342:373–377

    Article  CAS  Google Scholar 

  • Yoon JH, Grandelis A, Maddock RJ (2016) Dorsolateral prefrontal cortex GABA concentration in humans predicts working memory load processing capacity. J Neurosci 36(46):11788–11794

    Article  Google Scholar 

  • Young NA, Flaherty DK, Airey DC, Varlan P, Aworunse F, Kaas JH, Collins CE (2012) Use of flow cytometry for high-throughput cell population estimates in brain tissue. Front Neuroanat 6:27

    Article  Google Scholar 

  • Züst MA, Colella P, Reber TP, Vuilleumier P, Hauf M, Ruch S, Henke K (2015) Hippocampus is place of interaction between unconscious and conscious memories. PLoS ONE 10(3):e0122459

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Josef Boehm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Domschke, A., Boehm, F.J. (2017). Application of a Conceptual Nanomedical Platform to Facilitate the Mapping of the Human Brain: Survey of Cognitive Functions and Implications. In: Opris, I., Casanova, M.F. (eds) The Physics of the Mind and Brain Disorders. Springer Series in Cognitive and Neural Systems, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-29674-6_33

Download citation

Publish with us

Policies and ethics