Skip to main content

Systems Theory, Emergent Properties, and the Organization of the Central Nervous System

  • Chapter
  • First Online:
  • 1843 Accesses

Part of the book series: Springer Series in Cognitive and Neural Systems ((SSCNS,volume 11))

Abstract

The Central Nervous System can be understood as an organization whose levels have been established throughout evolution. In this organization, the cerebral hemispheres occupy the highest level of a hierarchical open system wherein the function of the brain is to match relationships among objects in the surrounding environment. The outer portion of the cerebral hemispheres is comprised of vertical arrays of cell bodies (minicolumns) whose close apposition provide for the cerebral cortex. Thalamic afferents terminate in the middle layers of the minicolumns and are integrated into microcircuits by vertical connections to more superficial and deeper layers. These repeating microcircuits comply with a definition for modules as weak linkages connecting elements within the module are more abundant than those between the modules. Electrophysiological studies with conformal multielectrode recording arrays have defined the transmission codes by which minicolumns give rise to executive functions, e.g., task-related selection. The emergence of minicolumnar functions appears to be prompted by physical constraints where laws of conservation guide the self-organization of minicolumns during brain development and ageing. The fact that minicolumns exhibit scalar properties relating pyramidal cell size and minicolumnar core size, rotational symmetry, and conservation of translational movements helps to conceptually organize the cytoarchitecture of the isocortex.

This is a preview of subscription content, log in via an institution.

References

  • Barker LF (1899) The nervous system and its constituent neurones. New York, D. Appleton and Company

    Google Scholar 

  • Breakspear M et al (2006) A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cereb Cortex 16:1296–1313

    Article  CAS  Google Scholar 

  • Breakspear M et al (2017) A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Nat Neurosci 20(3):340–352

    Article  CAS  Google Scholar 

  • Brodal A (1981) Neurological anatomy in relation to clinical medicine, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Brown AG (2001) Nerve cells and nervous systems: an introduction to neuroscience, 2nd edn. Springer, London

    Book  Google Scholar 

  • Buxhoeveden DP, Casanova MF (2002) The minicolumn hypothesis in neuroscience. Brain 125(Pt 5):935–951

    Article  Google Scholar 

  • Calvin WH (1996) How brains think: evolving intelligence. Then and now. Basic Books, New York

    Google Scholar 

  • Calvin WH (1995) Cortical columns, modules and Hebbian cell assemblies. In: Arbib MA (ed) The handbook of brain theory and neural networks. MIT Press, Cambridge, MA, pp 269–272

    Google Scholar 

  • Casanova MF (ed) (2005) Neocortical modularity and the cell minicolumn. Nova Science Publishers, New York

    Google Scholar 

  • Casanova MF (2013) Canonical circuits of the cerebral cortex as enablers of neuroprosthetics. Front Syst Neurosci 7:77

    Article  Google Scholar 

  • Casanova MF, Tillquist CR (2008) Encephalization, emergent properties, and psychiatry: a minicolumnar perspective. Neuroscientist 14(1):101–118

    Article  Google Scholar 

  • Casanova MF, Trippe J, Tillquist C, Switala AE (2009) Morphometric variability of minicolumns in the striate cortex of Homo Sapiens, Macaca mulatta, and Pan troglodytes. J Anat 214(2): 226–234

    Google Scholar 

  • Casanova MF, El-Baz A, Switala A (2011) Laws of conservation as related to brain growth, aging and evolution: symmetry of the minicolumn. Front Neuroanat 5:66

    Article  Google Scholar 

  • Creutzfeld OD (1917) Generality of the functional structure of the neocortex. Naturwiseenschaften 64:507–517

    Article  Google Scholar 

  • Crick F (1995) The astonishing hypothesis: the scientific search for the soul. Scribner reprint edition

    Google Scholar 

  • De Felipe J (2015) The anatomical problem posed by brain complexity and size: a potential solution. Front Neuroanat 9:104

    Google Scholar 

  • Doidge N (2007) The brain that changes itself. New York, Viking Penguin

    Google Scholar 

  • Douglas RJ, Martin KAC (1991) A functional microcircuit for cat visual cortex. J Physiol 440: 735–769

    Article  CAS  Google Scholar 

  • Fuster JM, Bressler SL (2012) Cognit activation: a mechanism enabling temporal integration in working memory. Trends Cogn Sci 16(4):207–18

    Google Scholar 

  • Hutsler JJ, Casanova MF (2016) Review: cortical construction in autism spectrum disorder: columns, connectivity and the subplate. Neuropathol Appl Neurobiol 42(2):115–134

    Article  Google Scholar 

  • Jacob F (1977) Evolution and tinkering. Science 196:1161–1166

    Article  CAS  Google Scholar 

  • Lorente de Nó R (1938) The cerebral cortex: architecture, intracortical connections, motor projections. In: Fulton JF (ed) Physiology of the nervous system. Oxford University Press, London, pp 274–301

    Google Scholar 

  • Mountcastle VB (1957) Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol 20:408–434

    Article  CAS  Google Scholar 

  • Mountcastle VB (1998) Perceptual neuroscience: the cerebral cortex, 1st edn. Harvard University Press, Boston

    Google Scholar 

  • Mountcastle VB, Berman AL, Davies PW (1957) Topographic organization and modality representation in the first somatic area of cat’s cerebral cortex by method of single unit analysis (abstract). Am J Phys 183:646

    Google Scholar 

  • Opris I, Hampson RE, Gerhardt GA, Berger TW, Deadwyler SA (2012) Columnar processing in primate pFC: evidence for executive control microcircuits. J Cogn Neurosci 24:2334–2347

    Article  Google Scholar 

  • Opris I, Santos L, Gerhardt GA, Song D, Berger TW, Hampson RE et al (2013) Prefrontal cortical microcircuits bind perception to executive control. Sci Rep 3:2285

    Article  Google Scholar 

  • Panksepp J (2004) Affective neuroscience: the foundations of human and animal emotions. Oxford University Press, Oxford

    Google Scholar 

  • Powell TPS, Mountcastle VB (1959) Some aspects of the functional organization of the cortex of the postcentral gyrus of the monkey: a comparison of findings obtained in a single unit analysis with cytoarchitecture. Bull JHH 105:133–162

    CAS  Google Scholar 

  • Rafati AH, Safavimanesh F, Dorph-Petersen KA, Rasmussen JG, Moller J, Nyengaard JR (2016) Detection and spatial characterization of minicolumnarity in the human cerebral cortex. J Microsc 261(1):115–126

    Article  CAS  Google Scholar 

  • Rakic P (1975) Local circuit neurons. NRP Bull 3, 2910446

    Google Scholar 

  • Shepherd GM (1974) The synaptic organization of the brain. Oxford University Press, New York

    Google Scholar 

  • Shepherd GM (1978) Microcircuits in the nervous system. Sci Am 238:93–103

    Article  CAS  Google Scholar 

  • Shepherd GM, Koch C (1998) Introduction to synaptic circuits. In: Shepherd G (ed) The synaptic organization of the brain, 4th edn. Oxford University press, New York, pp 1–36

    Google Scholar 

  • Stensen N (1669) Discours sur l’anatomie de cervau. Paris, Robert de Ninville

    Google Scholar 

  • Swanson LW (2003) Brain architecture. Oxford University Press, Oxford

    Google Scholar 

  • Van Veluw SJ, Sawyer EK, Clover L, Cousijn H, De Jager C, Esiri MM, Chance SA (2012) Prefrontal cortex cytoarchitecture in normal aging and Alzheimer’s disease: a relationship with IQ. Brain Struct Funct 217(4):797–808

    Article  Google Scholar 

  • Yandell K (2013) Sketching out cell theory, circa 1837. The Scientist, les.view/articleNo/36699/ title/Sketching-out-Cell-Theory--circa-1837

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel F. Casanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Casanova, M.F., Opris, I., Sokhadze, E., Casanova, E.L. (2017). Systems Theory, Emergent Properties, and the Organization of the Central Nervous System. In: Opris, I., Casanova, M.F. (eds) The Physics of the Mind and Brain Disorders. Springer Series in Cognitive and Neural Systems, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-29674-6_3

Download citation

Publish with us

Policies and ethics