Skip to main content

Characterization of Complex Brain Functions with Sparse Nonlinear Dynamical Modeling

  • Chapter
  • First Online:
  • 1816 Accesses

Part of the book series: Springer Series in Cognitive and Neural Systems ((SSCNS,volume 11))

Abstract

Building computational models to explain and mimic complex brain functions is one of the most challenging goals in science and engineering. In this article, we describe a specific form of input-output model of brain functions termed sparse generalized Laguerre-Volterra model. In this approach, input and output signals are spike trains a brain region receives from and sends out to other brain regions. Brain function is defined as its input-output transformational properties that can be represented by a multi-input, multi-output nonlinear dynamical model. Using regularized estimation and basis functions, sparse form of the model can be derived to reduce model complexity and better capture the sparse connectivities in the brain. This approach has been successfully applied to the human hippocampus. The resulting hippocampal CA3-CA1 model accurately predicts the CA1 (output) spike trains based on the ongoing CA3 (input) spike trains and provides a computational basis for developing hippocampal memory prostheses.

This is a preview of subscription content, log in via an institution.

References

  • Berger TW et al (2005) Restoring lost cognitive function. IEEE Eng Med Biol Mag 24(5):30–44

    Article  Google Scholar 

  • Berger TW, Hampson RE, Song D, Goonawardena A, Marmarelis VZ, Deadwyler SA (2011) A cortical neural prosthesis for restoring and enhancing memory. J Neural Eng 8(4):046017

    Article  Google Scholar 

  • Berger TW et al (2012) A hippocampal cognitive prosthesis: multi-input, multi-output nonlinear modeling and VLSI implementation (in English). IEEEE Trans Neural Syst Rehabil Eng 20(2):198–211

    Article  Google Scholar 

  • Breheny P, Huang J (2009) Penalized methods for bi-level variable selection. Stat Interface 2(3):369–380

    Article  Google Scholar 

  • de Boor C (1972) On calculating with B-splines. J Approx Theory 6:50–62

    Article  Google Scholar 

  • Hampson RE et al (2012a) Facilitation and restoration of cognitive function in primate prefrontal cortex by a neuroprosthesis that utilizes minicolumn-specific neural firing. J Neural Eng 9(5):056012

    Article  Google Scholar 

  • Hampson RE et al (2012b) A nonlinear model for hippocampal cognitive prosthesis: memory facilitation by hippocampal ensemble stimulation (in English). IEEE Trans Neural Syst Rehabil Eng 20(2):184–197

    Article  Google Scholar 

  • Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9(6):1179–1209

    Article  CAS  Google Scholar 

  • Huang J, Ma S, Xie H, Zhang C-H (2009) A group bridge approach for variable selection. Biometrika 96(4):1024–1024

    Google Scholar 

  • Johnston D, Wu SM (1995) Foundations of cellular neurophysiology. MIT Press, Cambridge, MA

    Google Scholar 

  • Marmarelis VZ (1993) Identification of nonlinear biological systems using Laguerre expansions of kernels. Ann Biomed Eng 21(6):573–589

    Article  CAS  Google Scholar 

  • Robinson BS, Song D, Marmarelis VZ, Hampson RE, Deadwyler SA, Berger TW (2015) Estimation of a large-scale generalized Volterra model for neural ensembles with group lasso and local coordinate descent (in eng). Proc IEEE EMBS Conf 2015:2526–2529

    Google Scholar 

  • Schwartz AB (2004) Cortical neural prosthetics. Annu Rev Neurosci 27:487–507

    Article  CAS  Google Scholar 

  • Song D, Berger TW (2009) Identification of nonlinear dynamics in neural population activity. In: Oweiss KG (ed) Statistical signal processing for neuroscience and neurotechnology. McGraw-Hill/Irwin, Boston

    Google Scholar 

  • Song D, Chan RH, Marmarelis VZ, Hampson RE, Deadwyler SA, Berger TW (2007) Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses. IEEE Trans Biomed Eng 54(6 Pt 1):1053–1066

    Article  Google Scholar 

  • Song D, Marmarelis VZ, Berger TW (2009a) Parametric and non-parametric modeling of short-term synaptic plasticity. Part I: computational study. J Comput Neurosci 26(1):1–19

    Article  Google Scholar 

  • Song D, Chan RH, Marmarelis VZ, Hampson RE, Deadwyler SA, Berger TW (2009b) Nonlinear modeling of neural population dynamics for hippocampal prostheses (in eng). Neural Netw 22(9):1340–1351

    Article  Google Scholar 

  • Song D, Chan R, Marmarelis VZ, Hampson RE, Deadwyler SA, Berger TW (2009c) Sparse generalized Laguerre-Volterra Model of neural population dynamic. In: Proceedings of the 31st annual international conference of the IEEE EMBS, pp 4555–4558

    Google Scholar 

  • Song D et al (2013) Identification of sparse neural functional connectivity using penalized likelihood estimation and basis functions. J Comput Neurosci 35(3):335–357

    Article  Google Scholar 

  • Song D, Harway M, Marmarelis VZ, Hampson RE, Deadwyler SA, Berger TW (2014) Extraction and restoration of hippocampal spatial memories with non-linear dynamical modeling. Front Syst Neurosci 8:97

    Article  CAS  Google Scholar 

  • Song D, Robinson BS, Marmarelis VZ, Hampson RE, Deadwyler SA, Berger TW (2015) Sparse generalized Volterra model of human hippocampal spike train transformation for memory prostheses (in eng). Proc IEEE EMBS Conf 2015:3961–3964

    Google Scholar 

  • Song D, Robinson B, Hampson R, Marmarelis V, Deadwyler S, Berger T (2016) Sparse large-scale nonlinear dynamical modeling of human hippocampus for memory prostheses. IEEE Trans Neural Syst Rehabil Eng, doi:10.1109/TNSRE.2016.2604423

  • Tibshirani R (1996) Regression shrinkage and selection via the Lasso (in English). J R Stat Soc Ser B-Methodol 58(1):267–288

    Google Scholar 

  • Yuan M, Lin Y (2006) Model selection and estimation in regression with grouped variables (in English). J R Stat Soc Ser B-Stat Methodol 68:49–67

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Defense Advanced Research Projects Agency (DARPA N66001-14-C-4016), and the NIH U01 (GM104604).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Song, D., Berger, T.W. (2017). Characterization of Complex Brain Functions with Sparse Nonlinear Dynamical Modeling. In: Opris, I., Casanova, M.F. (eds) The Physics of the Mind and Brain Disorders. Springer Series in Cognitive and Neural Systems, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-29674-6_24

Download citation

Publish with us

Policies and ethics