Introduction: From Neurons to the Mind

  • Aurel I. PopescuEmail author
  • Ioan Opris
Part of the Springer Series in Cognitive and Neural Systems book series (SSCNS, volume 11)


We begin with the introduction of the general biophysics relevant concepts for the nervous system that will be discussed in more detail in the next chapters of the book. The first step deals with the neuron: the fundamental morphological and functional unit of the human nervous system (HNS). It is known that HNS (i.e., central nervous system, CNS and peripheral nervous system, PNS) consist of about 86 billion neurons (Azevedo et al. 2009; Herculano-Houzel 2009) without taking into account the glial cells that outnumber neurons by tenfold, and astrocytes. However, it is interesting to note that astronomers estimate the number of stars in the Milky Way as being about 400 billion, that is, only five times the number of HNS neurons! It seems that glia has only the role to insulate, support, and nourish the neighbor neurons, construct axon myelin, repair brain injury, although this simple view merely reflects our ignorance about glial function (Bear et al. 2001).


Biophysics neuron resting potential action potential excitable membrane ionic channel synapse spine plasticity mind 


  1. Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381CrossRefPubMedGoogle Scholar
  2. Andersen P (1990) Synaptic integration in hippocampal CA1 pyramids. Prog Brain Res 83:215–222CrossRefPubMedGoogle Scholar
  3. Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, Jacob Filho W, Lent R, Herculano-Houzel S (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. Comp Neurol 513:532. doi: 10.1002/cne.21974 CrossRefGoogle Scholar
  4. Bastos AM, Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries P, Friston KJ (2012) Canonical microcircuits for predictive coding. Neuron 76:695–711CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bear MC, Connors BW, Paradiso MA (2001) Neuroscience: exploring the brain, 2nd edn. Lippincott Williams &Wilkins, A Wolter Kluwer Company, BaltimoreGoogle Scholar
  6. Benavides-Piccione R, Fernaud-Espinosa I, Robles V, Yuste R, DeFelipe J (2013) Age-based comparison of human dendritic spine structure using complete three-dimensional reconstructions. Cereb Cortex 23(8):1798–1810CrossRefPubMedGoogle Scholar
  7. Beul SF, Grant S, Hilgetag CC (2015) A predictive model of the cat cortical connectome based on cytoarchitecture and distance. Brain Struct Funct 220(6):3167–3184. doi: 10.1007/s00429-014-0849-y CrossRefPubMedGoogle Scholar
  8. Bugbee NM, Goldman-Rakic PS (1983) Columnar organization of corticocortical projections in squirrel and rhesus monkeys: similarity of column width in species differing in cortical volume. J Comp Neurol 220:355–364CrossRefPubMedGoogle Scholar
  9. Buxhoeveden DP, Casanova MF (2002) The minicolumn hypothesis in neuroscience. Brain 125:935–951. doi: 10.1093/brain/awf110 CrossRefPubMedGoogle Scholar
  10. Clay JR (2005) Axonal excitability revisited. Prog Biophys Mol Biol 88:59–90CrossRefPubMedGoogle Scholar
  11. Casanova MF (2005) An apologia for a paradigm shift in neurosciences. In: Casanova MF (ed) Neocortical modularity and the cell minicolumn. Nova Biomedical Publishers, New York, pp 33–55Google Scholar
  12. Casanova MF (2013) Neural mechanisms in autism. In: Encyclopedia of autism spectrum disorders. Springer, Heidelberg, pp 1994–2007Google Scholar
  13. Casanova MF, Kreczmanski P, Trippe J 2nd, Switala A, Heinsen H, Steinbusch HW, Schmitz C (2008) Neuronal distribution in the neocortex of schizophrenic patients. Psychiatry Res 158:267–277. doi: 10.1016/j.psychres.2006.12.009 CrossRefPubMedGoogle Scholar
  14. Casanova MF, Sokhadze E, Opris I, Wang Y, Li X (2015) Autism spectrum disorders: linking neuropathological findings to treatment with transcranial magnetic stimulation. Acta Paediatr 104(4):346–355. doi: 10.1111/apa.12943 CrossRefPubMedGoogle Scholar
  15. DeFelipe J (2010) From the connectome to the synaptome: an epic love story. Science 330(6008):1198–1201CrossRefPubMedGoogle Scholar
  16. DeFelipe J (2011) The evolution of the brain, the human nature of cortical circuits, and intellectual creativity. Front Neuroanat 5:29PubMedPubMedCentralGoogle Scholar
  17. DeFelipe J, Markram H, Rockland KS (2012) The neocortical column. Front Neuroanat 6:22CrossRefPubMedPubMedCentralGoogle Scholar
  18. Drachman D (2005) Do we have brain to spare? Neurology 64:2004–2005CrossRefPubMedGoogle Scholar
  19. Favorov OV, Diamond ME (1990) Demonstration of discrete place-defined columns segregates in the cat SI. J Comp Neurol 298(1):97–112CrossRefPubMedGoogle Scholar
  20. Favorov OV, Diamond ME, Whitsel BL (1987) Evidence for a mosaic representation of the body surface in area 3b of the somatic cortex of cat. Proc Natl Acad Sci U S A 84(18):6606–6610CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fuster JM (1990) Inferotemporal units in selective visual attention and short-term memory. J Neurophysiol 64(3):681–697PubMedGoogle Scholar
  22. Fuster JM (2007) Jackson and the frontal executive hierarchy. Int J Psychophysiol 64(1):106–107CrossRefPubMedGoogle Scholar
  23. Fuster JM, Bressler SL (2012) Cognit activation: a mechanism enabling temporal integration in working memory. Trends Cogn Sci 16:207–218. doi: 10.1016/j.tics.2012.03.005 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gilbert CD, Wiesel TN (1989) Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. J Neurosci 9(7):2432–2442PubMedGoogle Scholar
  25. Hebb DO (1949) The organization of behavior. Wiley, New YorkGoogle Scholar
  26. Herculano-Houzel S (2009) The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci 3:31. doi: 10.3389/neuro.09.031.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hille B (2001) Ion channels of excitable membranes. Sinauer Associations, Inc., SunderlandGoogle Scholar
  28. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol Lond 117:500–544CrossRefPubMedPubMedCentralGoogle Scholar
  29. Horton JC, Adams DL (2005) The cortical column: a structure without a function. Philos Trans R Soc Lond Ser B Biol Sci 360:837–862CrossRefGoogle Scholar
  30. Hubel DH (1982) Cortical neurobiology: a slanted historical perspective. Annu Rev Neurosci 5:363–370CrossRefPubMedGoogle Scholar
  31. Hubel DH, Wiesel TN (1974) Sequence regularity and geometry of orientation columns in the monkey striate cortex. J Comp Neurol 158(3):267–293CrossRefPubMedGoogle Scholar
  32. Jones EG (2000) Microcolumns in the cerebral cortex. Proc Natl Acad Sci U S A 97(10):5019–5021CrossRefPubMedPubMedCentralGoogle Scholar
  33. Jones EG, Rakic P (2010) Radial columns in cortical architecture: it is the composition that counts. Cereb Cortex 20:2261–2264. doi: 10.1093/cercor/bhq127 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kuffler SW, Yoshikami D (1975) The number of transmitter molecules in a quantum: an estimate from iontophoretic application of acetylcholine at the neuromuscular synapse. J Physiol 251(2):465–482CrossRefPubMedPubMedCentralGoogle Scholar
  35. Laberge D, Kasevich R (2007) The apical dendrite theory of consciousness. Neural Netw 20:1004. doi: 10.1016/j.neunet.2007.09.006 CrossRefPubMedGoogle Scholar
  36. Lüscher C, Isaac JT (2009) The synapse: center stage for many brain diseases. J Physiol 587:727–729. doi: 10.1113/jphysiol.2008.167742 CrossRefPubMedPubMedCentralGoogle Scholar
  37. McCulloch W, Pitts W (1943) A logical calculus of ideas immanent in nervous activity. Bull Math Biophys 5(4):115–133CrossRefGoogle Scholar
  38. McFarland NR, Haber SN (2002) Thalamic relay nuclei of the basal ganglia form both reciprocal and nonreciprocal cortical connections, linking multiple frontal cortical areas. J Neurosci 22(18):8117–8132PubMedGoogle Scholar
  39. Merchán-Pérez A, Rodriguez JR, Alonso-Nanclares L, Schertel A, DeFelipe J (2009) Counting synapses using FIB/SEM microscopy: a true revolution for ultrastructural volume reconstruction. Front Neuroanat 3:18CrossRefPubMedPubMedCentralGoogle Scholar
  40. Mountcastle VB (1957) Modality and topographic properties of single neurons of cats somatic sensory cortex. J Neurophysiol 20:408–434PubMedGoogle Scholar
  41. Mountcastle VB (1978) An organizing principle for cerebral function: the unit module and the distributed system. In: Edelman GM, Mountcastle VB (eds) The mindful brain. MIT Press, Massachusetts, pp 7–50Google Scholar
  42. Mountcastle VB (1997) The columnar organization of the neocortex. Brain 120:701–722. doi: 10.1093/brain/120.4.701 CrossRefPubMedGoogle Scholar
  43. Mountcastle VB, Berman AL, Davies PW (1955) Topographic organization and modality representation in first somatic area of cat’s cerebral cortex by method of single unit analysis. Am J Phys 183:646Google Scholar
  44. Nicholls JG, Martin AR, Wallace BG, Fuchs PA (2001) From Neuron to brain, 4th edition, Sinauer Associates, Inc. Publishers, SunderlandGoogle Scholar
  45. Opris I (2013) Inter-laminar microcircuits across the neocortex: repair and augmentation. Front Syst Neurosci 7:80. doi: 10.3389/fnsys.2013.00080 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Opris I, Bruce CJ (2005) Neural circuitry of judgment and decision mechanisms. Brain Res Rev 48:509–526. doi: 10.1016/j.brainresrev. 2004.11.001 CrossRefPubMedGoogle Scholar
  47. Opris I, Casanova MF (2014) Prefrontal cortical minicolumn: from executive control to disrupted cognitive processing. Brain 137:1863–1875. doi: 10.1093/brain/awt359 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Opris I, Hampson RE, Stanford TR, Gerhardt GA, Deadwyler SA (2011) Neural activity in frontal cortical cell layers: evidence for columnar sensorimotor processing. J Cogn Neurosci 23:1507–1521. doi: 10.1162/jocn.2010.21534 CrossRefPubMedGoogle Scholar
  49. Opris I, Fuqua JL, Huettl PF, Gerhardt GA, Berger TW, Hampson RE et al (2012a) Closing the loop in primate prefrontal cortex: inter-laminar processing. Front Neural Circ 6:88. doi: 10.3389/fncir.2012.00088 Google Scholar
  50. Opris I, Hampson RE, Gerhardt GA, Berger TW, Deadwyler SA (2012b) Columnar processing in primate pFC: evidence for executive control microcircuits. J Cogn Neurosci 24:2334–2347. doi: 10.1162/jocn_a_00307 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Opris I, Santos L, Gerhardt GA, Song D, Berger TW, Hampson RE et al (2013) Prefrontal cortical microcircuits bind perception to executive control. Sci Rep 3:2285. doi: 10.1038/srep02285 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Opris I, Fuqua JL, Gerhardt GA, Hampson RE, Deadwyler SA (2015a) Prefrontal cortical recordings with biomorphic MEAs reveal complex columnar-laminar microcircuits for BCI/BMI implementation. J Neurosci Methods 244:104–113. doi: 10.1016/j.jneumeth.2014.05.029 CrossRefPubMedGoogle Scholar
  53. Opris I, Santos LM, Gerhardt GA, Song D, Berger TW, Hampson RE, Deadwyler SA (2015b) Distributed encoding of spatial and object categories in primate hippocampal microcircuits. Front Neurosci 9:317. doi: 10.3389/fnins.2015.00317 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Popescu AI (2016) Biophysics. Current status and future trends. The Publishing House of the Romanian Academy, BucharestGoogle Scholar
  55. Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaMantia A-S, McNamara JO, White LE (2008) Neuroscience, vol 4. Sinauer Associates, Sunderland, pp 432–434Google Scholar
  56. Quast KB, Ung K, Froudarakis E, Huang L, Herman I, Addison AP, Ortiz-Guzman J, Cordiner K, Saggau P, Tolias AS, Arenkiel BR (2016) Developmental broadening of inhibitory sensory maps. Nat Neurosci. doi: 10.1038/nn.4467
  57. Raicu V, Popescu A (2008) Integrated molecular and cellular biophysics. Springer Science + Business Media B. V., New YorkCrossRefGoogle Scholar
  58. Rakic P (1988) Specification of cerebral cortical areas. Science 241(4862):170–176CrossRefPubMedGoogle Scholar
  59. Rinkus GJ (2010) A cortical sparse distributed coding model linking mini- and macrocolumn-scale functionality. Front Neuroanat 4:17PubMedPubMedCentralGoogle Scholar
  60. Ripley BD (1996) Pattern recognition and neural networks. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  61. Salinas E (2004) Fast remapping of sensory stimuli onto motor actions on the basis of contextual modulation. J Neurosci 24:1113–1118CrossRefPubMedGoogle Scholar
  62. Santos L, Opris I, Hampson R, Godwin DW, Gerhardt G, Deadwyler S (2014) Functional dynamics of primate cortico-striatal networks during volitional movements. Front Syst Neurosci 10(8):27. doi: 10.3389/fnsys.2014.00027 Google Scholar
  63. Shanahan M (2012) The brain’s connective core and its role in animal cognition. Philos Trans R Soc B 367:2704–2714. CrossRefGoogle Scholar
  64. Sporns O (2016) Discovering the human connectome. MIT Press, London/Cambridge, MAGoogle Scholar
  65. Swadlow HA, Gusev AG, Bezdudnaya T (2002) Activation of a cortical column by a thalamocortical impulse. J Neurosci 22:7766–7773PubMedGoogle Scholar
  66. Swindale NV (1998) Cortical organization: modules, polymaps and mosaics. Curr Biol 8: R270–R273CrossRefPubMedGoogle Scholar
  67. Swindale NV, Shoham D, Grinvald A, Bonhoeffer T, Hübener M (2000) Visual cortex maps are optimized for uniform coverage. Nat Neurosci 3:822–826CrossRefPubMedGoogle Scholar
  68. Takeuchi D, Hirabayashi T, Tamura K, Miyashita Y (2011) Reversal of interlaminar signal between sensory and memory processing in monkey temporal cortex. Science 331:1443–1447CrossRefPubMedGoogle Scholar
  69. van Spronsen M, Hoogenraad CC (2010) Synapse pathology in psychiatric and neurologic disease. Curr Neurol Neurosci Rep 10(3):207–214. doi: 10.1007/s11910-010-0104-8 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Werchan DM, Collins AGE, Dima M, Frank AJ (2016) Role of prefrontal cortex in learning and generalizing hierarchical rules in 8-month-old infants. J Neurosci 36(40):10314–10322. CrossRefPubMedPubMedCentralGoogle Scholar
  71. Wiesel TN, Hubel DH (1974) Ordered arrangement of orientation columns in monkeys lacking visual experience. J Comp Neurol 158(3):307–318CrossRefPubMedGoogle Scholar
  72. York GK 3rd, Steinberg DA (2011) Hughlings Jackson’s neurological ideas. Brain 134(Pt 10):3106–3113. doi: 10.1093/brain/awr219 CrossRefPubMedGoogle Scholar
  73. Zhang M, Alloway KD (2006) Intercolumnar synchronization of neuronal activity in rat barrel cortex during patterned air jet stimulation: a laminar analysis. Exp Brain Res 169(3):311–325CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Electricity, Physics of Solid and Biophysics, Faculty of PhysicsUniversity of BucharestBucharestRomania
  2. 2.Miami Project to Cure Paralysis, Department of Neurological Surgery, Miller School of Medicine University of MiamiMiamiUSA
  3. 3.Department of Veterinary MedicineUniversity of Agronomical Sciences and Veterinary MedicineBucharestRomania

Personalised recommendations