Skip to main content

Cortical Microstructures: Lateralization, Ageing, and Disruption Across the Lifespan

  • Chapter
  • First Online:
  • 1790 Accesses

Part of the book series: Springer Series in Cognitive and Neural Systems ((SSCNS,volume 11))

Abstract

The present review considers the evidence for microstructural cell assemblies as a form of neuroanatomical module, constituting building blocks for functional differentiation and processing specialisation (Chance 2014). Their organisation confers subtle differences between the hemispheres in the typically developed human brain and reveals anomalies of development associated with altered processing in some neuropsychiatric conditions. In the mature brain the same structures may be seen to undergo changes as a result of acquired functional specialisation and, in later life, they may be measured as an index of loss of differential function in ageing and neurodegeneration.

This is a preview of subscription content, log in via an institution.

References

  • Arendt T: Synaptic plasticity and cell cycle activation in neurons are alternative effector pathways: the Jekyll and Hyde concept of Alzheimer’s disease or the yin and yang of neuroplasticity. Prog Neurobiol 2003, 71: 83–248. 10.1016/j.pneurobio.2003.09.007. View

  • Bilalić M, Turella L, Campitelli G, Erb M, Grodd W (2012) Expertise modulates the neural basis of context dependent recognition of objects and their relations. Hum Brain Mapp 33:2728–2740

    Article  Google Scholar 

  • Bilder RM, Wu H, Bogerts B, Degreef G, Ashtari M, Alvir JMJ et al (1994) Absence of regional hemispheric volume asymmetries in first episode schizophrenia. Am J Psychiatry 151:1437–1447. [PubMed]

    Article  CAS  Google Scholar 

  • Buldyrev SV, Cruz L, Gomez-Isla T, Gomez-Tortosa E, Havlin S, Le R, Stanley HE, Urbanc B, Hyman BT (2000) Description of microcolumnar ensembles in association cortex and their disruption in Alzheimer and Lewy body dementias. Proc Natl Acad Sci U S A 97:5039–5043

    Article  CAS  Google Scholar 

  • Buxhoeveden DP, Switala AE, Litaker M, Roy E, Casanova MF (2001) Lateralization of minicolumns in human planum temporale is absent in nonhuman primate cortex. Brain Behav Evol 57:349–358. doi:10.1159/000047253. [PubMed] [Cross Ref]

    Article  CAS  Google Scholar 

  • Cardin V, Friston KJ, Zeki S (2011) Top-down modulations in the visual form pathway revealed with dynamic causal modelling. Cereb Cortex 21:550–562

    Article  Google Scholar 

  • Carey S (1978) The child as a word learner. In: Halle M, Bresnan J, Miller G (eds) Linguistic theory and psychological reality. MITPress, Cambridge, MA, pp 347–380

    Google Scholar 

  • Casanova MF, van Kooten IA, Switala AE, van Engeland H, Heinsen H, Steinbusch HW et al (2006) Minicolumnar abnormalities in autism. Acta Neuropathol 112:287–303. doi:10.1007/s00401-006-0085-5. [PubMed] [Cross Ref]

    Article  Google Scholar 

  • Chance SA (2014) The cortical microstructural basis of lateralized cognition: a review. Front Psychol 5:820. doi:10.3389/fpsyg.2014.00820

    Article  Google Scholar 

  • Chance SA, Esiri MM, Crow TJ (2005) Macroscopic brain asymmetry is changed along the antero-posterior axis in schizophrenia. Schizophr Res 74:163–170. doi:10.1016/j.schres.2004.09.001. [PubMed] [Cross Ref]

    Article  Google Scholar 

  • Chance SA, Casanova MF, Switala AE, Crow TJ (2006) Minicolumnar structure in Heschl’s gyrus and planum temporale: asymmetries in relation to sex and callosal fiber number. Neuroscience 143:1041–1050. doi:10.1016/j.neuroscience.2006.08.057. [PubMed] [Cross Ref]

    Article  CAS  Google Scholar 

  • Chance SA, Casanova MF, Switala A, Crow TJ (2008) Auditory cortex asymmetry, altered minicolumn spacing and absence of ageing effects in schizophrenia. Brain 131:3178–3192. doi:10.1093/brain/awn211. [PMC free article] [PubMed] [Cross Ref]

    Article  Google Scholar 

  • Chance SA, Clover L, Cousijn H, Currah L, Pettingill R, Esiri MM (2011a) Micro-anatomical correlates of cognitive ability and decline: normal ageing, MCI and Alzheimer’s disease. Cereb Cortex 21:1870–1878. doi:10.1093/cercor/bhq264. [PubMed] [Cross Ref]

    Article  Google Scholar 

  • Chance SA, James ACD, Peet R, Nicholls G (2011b) Classifying patients and controls using multi-dimensional scaling and exploring the metric of semantic space. In: Carlson L, Hoelscher C, Shipley TF (eds) Proceedings of cognitive science society. Cognitive Science Society, Austin, pp 1817–1822

    Google Scholar 

  • Chance S, Van Veluw SJ, Sawyer EK, Clover L, Cousijn H, De Jager C, Esiri MM, Chance SA (2012) Prefrontal cortex cytoarchitecture in normal aging and Alzheimer’s disease: a relationship with IQ. Brain Struct Funct. doi:10.1007/s00429-012-0381-x

  • Chance SA, Sawyer EK, Clover LM, Wicinski B, Hof PR, Crow TJ (2013) Hemispheric asymmetry in the fusiform gyrus distinguishes Homo sapiens from chimpanzees. Brain Struct Funct 218:1391–1405. doi:10.1007/s00429-012-0464-8. [PubMed] [Cross Ref]

    Article  Google Scholar 

  • Crow TJ (1990) Temporal lobe asymmetries as the key to the etiology of schizophrenia. Schizophr Bull 16:433–443. doi:10.1093/schbul/16.3.433. [PubMed] [Cross Ref]

    Article  CAS  Google Scholar 

  • Crow TJ, Paez P, Chance SA (2007) Callosal misconnectivity and the sex difference in psychosis. Int Rev Psychiatry 19:449–457. doi:10.1080/09540260701486282. [PubMed] [Cross Ref]

    Article  CAS  Google Scholar 

  • Cruz L, Roe DL, Urbanc B, Cabral H, Stanley HE, Rosene DL (2004) Age-related reduction in microcolumnar structure in area 46 of the rhesus monkey correlates with behavioral decline. Proc Natl Acad Sci 101:15846–15851

    Article  CAS  Google Scholar 

  • Cruz L, Roe DL, Urbanc B, Inglis A, Stanley HE, Rosene DL (2009a) Age-related reduction in microcolumnar structure correlates with cognitive decline in ventral but not dorsal area 46 of the rhesus monkey. Neuroscience 158:1509–1520. doi:10.1016/j.neuroscience.2008.11.033. [PMC free article] [PubMed] [Cross Ref]

    Article  CAS  Google Scholar 

  • Cruz L, Roe DL, Urbanc B, Inglis A, Stanley HE, Rosene DL (2009b) Age-related reduction in microcolumnar structure correlates with cognitive decline in ventral but not dorsal area 46 of the rhesus monkey. Neuroscience 158(4):1509–1520

    Article  CAS  Google Scholar 

  • DeLisi LE, Sakuma M, Kushner M, Finer DL, Hoff AL, Crow TJ (1997) Anomalous cerebral asymmetry and language processing in schizophrenia. Schizophr Bull 23:255–271. doi:10.1093/schbul/23.2.255. [PubMed] [Cross Ref]

    Article  CAS  Google Scholar 

  • Di Rosa E, Crow TJ, Walker MA, Black G, Chance SA (2009a) Reduced neuron density, enlarged minicolumn spacing and altered ageing effects in fusiform cortex in schizophrenia. Psychiatry Res 166:102–115. doi:10.1016/j.psychres.2008.04.007. [PubMed] [Cross Ref]

    Article  Google Scholar 

  • Di Rosa E, Crow TJ, Walker MA, Black G, Chance SA (2009b) Reduced neuron density, enlarged minicolumn spacing and altered ageing effects in fusiform cortex in schizophrenia. Psychiatry Res:166, 102–115. doi:10.1016/j.psychres.2008.04.007. [PubMed] [Cross Ref]

  • Dowling NM, Farias ST, Reed BR, Sonnen JA, Strauss ME, Schnieder JA, Bennett DA, Mungas D (2011) Neuropathological associates of multiple cognitive functions in two community-based cohorts of older adults. J Int Neuropsychol Soc 17:602–614. doi:10.1017/S1355617710001426. PubMed CentralView

    Article  Google Scholar 

  • Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A (2004) Neuroplasticity: changes in grey matter induced by training. Nature 427(6972):311–312

    Article  CAS  Google Scholar 

  • Driemeyer J, Boyke J, Gaser C, Büchel C, May A (2008) Changes in gray matter induced by learning—revisited. PLoS One 3(7):e2669

    Article  Google Scholar 

  • Eckert MA, Leonard CM, Possing ET, Binder JR (2006) Uncoupled leftward asymmetries for planum morphology and functional language processing. Brain Lang 98:102–111. doi:10.1016/j.bandl.2006.04.002. [PMC free article] [PubMed] [Cross Ref]

    Article  Google Scholar 

  • Efron R (1963) Temporal perception, aphasia and deja vu. Brain 86:403–423. doi:10.1093/brain/86.3.403. [PubMed] [Cross Ref]

    Article  CAS  Google Scholar 

  • Elmer S, Meyer M, Joncke L (2011) Neurofunctional and behavioral correlates of phonetic and temporal categorization in musically trained and untrained subjects. Cereb Cortex. doi:10.1093/cercor/bhr142

  • Esiri MM, Chance SA (2006) Vulnerability to Alzheimer’s pathology in neocortex: the roles of plasticity and columnar organization. J Alzheimers Dis 9:79–89

    Article  CAS  Google Scholar 

  • Esiri MM, Chance SA (2012) Cognitive reserve, cortical plasticity and resistance to Alzheimer’s disease. Alzheimers Res Ther 4(2):7. doi:10.1186/alzrt105

    Article  Google Scholar 

  • Frith U (1989) Autism: explaining the enigma. Blackwell, Oxford

    Google Scholar 

  • Gabeza R (2002) Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol Aging 17(1):85–100

    Article  Google Scholar 

  • Gabora L (2002) Amplifying phenomenal information: toward a fundamental theory of consciousness. J Conscious Stud 9:3–29

    Google Scholar 

  • Galaburda AM (1995) Anatomic basis of cerebral dominance. In: Davidson RJ, Hugdahl K (eds) Brain asymmetry. MIT Press, Cambridge, MA

    Google Scholar 

  • Galuske RA, Schlote W, Bratzke H, Singer W (2000) Interhemispheric asymmetries of the modular structure in human temporal cortex. Science 289:1946–1949. doi:10.1126/science.289.5486.1946. [PubMed] [Cross Ref]

    Article  CAS  Google Scholar 

  • Gardenfors P (2000) Conceptual spaces: the geometry of thought. MIT Press, Cambridge, MA

    Book  Google Scholar 

  • Gastgeb HZ, Strauss MS, Minshew NJ (2006) Do individuals with autism process categories differently? The effect of typicality, and development. Child Dev 77:1717–1729. doi:10.1111/j.1467-8624.2006.00969.x. [PubMed] [Cross Ref]

    Article  Google Scholar 

  • Gastgeb HZ, Dundas EM, Minshew NJ, Strauss MS (2012) Category formation in autism: can individuals with autism form categories, and prototypes of dot patterns? J Autism Dev Disord 42:1694–1704. doi:10.1007/s10803-011-1411-x. [PMC free article] [PubMed] [Cross Ref]

    Article  Google Scholar 

  • Gauthier I, Tarr MJ, Anderson AW, Skudlarski P, Gore JC (1999) Activation of the middle fusiform ‘face area’ increases with expertise in recognizing novel objects. Nat Neurosci 2:568–573

    Article  CAS  Google Scholar 

  • Geschwind N, Levitsky W (1968) Human brain: left–right asymmetries in temporal speech region. Science 161:186–187. doi:10.1126/science.161.3837.186. [PubMed] [Cross Ref]

    Article  CAS  Google Scholar 

  • Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, Paus T, Evans AC, Rapoport JL (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2:861–863. doi:10.1038/13158

    Article  CAS  Google Scholar 

  • Goh JO, Suzuki A, Park DC (2010) Reduced neural selectivity increases fMRI adaptation with age during face discrimination. NeuroImage 51:336–344. doi:10.1016/j.neuroimage.2010.01.107

    Article  Google Scholar 

  • Goldstone RL, Barsalou LW (1998) Reuniting perception and conception. Cognition 65:231–262

    Article  CAS  Google Scholar 

  • Gopnik A (2010) How babies think. Sci Am:76–81

    Google Scholar 

  • Gustafsson L (1997) Inadequate cortical feature maps: a neural circuit theory of autism. Biol Psychiatry 42(12):1138–1147

    Article  CAS  Google Scholar 

  • Gustafsson L (2004) Comment on “Disruption in the inhibitory architecture of the cell minicolumn: implications for autism”. Neuroscientist 10(3):189–191

    Article  Google Scholar 

  • Harasty J, Seldon HL, Chan P, Halliday G, Harding A (2003) The left human speech-processing cortex is thinner but longer than the right. Laterality 8:247–260. doi:10.1080/13576500244000175. [PubMed] [Cross Ref]

    Article  CAS  Google Scholar 

  • Hutsler JJ (2003) The specialized structure of human language cortex: pyramidal cell size asymmetries within auditory and language associated regions of the temporal lobes. Brain Lang 86:226–242. doi:10.1016/S0093-934X(02)00531-X. [PubMed] [Cross Ref]

    Article  Google Scholar 

  • Jung-Beeman M (2005) Bilateral brain processes for comprehending natural language. Trends Cogn Sci 9:512–518. doi:10.1016/j.tics.2005.09.009. [PubMed] [Cross Ref]

    Article  Google Scholar 

  • Kanwisher N, McDermott J, Chun MM (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17:4302–4311. [PubMed]

    Article  CAS  Google Scholar 

  • Karmiloff-Smith A (2009) Nativism versus neuroconstructivism: rethinking the study of developmental disorders. Dev Psychol 45(1):56–63

    Article  Google Scholar 

  • Kircher T, Liddle P, Brammer M, Murray R, McGuire P (2003) Neural correlates of “negative” formal thought disorder. Nervenarzt 74:748–754. doi:10.1007/s00115-003-1497-2. [PubMed] [Cross Ref]

    Article  CAS  Google Scholar 

  • Lindenberger U, Baltes PB (1994) Sensory functioning and intelligence in old age: a strong connection. Psychol Aging 9:339–355

    Google Scholar 

  • Maguire EA, Woollett K, Spiers HJ (2006) London taxi drivers and bus drivers: a structural MRI and neuropsychological analysis. Hippocampus 16(12):1091–1101

    Article  Google Scholar 

  • Meng M, Cherian T, Singal G, Sinha P (2012) Lateralization of face processing in the human brain. Proc Bio Sci 279:2052–2061. doi:10.1098/rspb.2011.1784. [PMC free article] [PubMed] [Cross Ref]

    Article  Google Scholar 

  • Mesulam MM (1999) Neuroplasticity failure in Alzheimer’s disease: bridging the gap between plaques and tangles. Neuron 24:521–529. doi:10.1016/S0896-6273(00)81109-5

    Article  CAS  Google Scholar 

  • Ohnishi T, Matsuda H, Asada T et al (2001) Functional anatomy of musical perception in musicians. Cereb Cortex 11:754–760

    Article  CAS  Google Scholar 

  • Ono K, Nakamura A, Yoshiyama K, Kinkori T, Bundo M, Kato T et al (2011) The effect of musical experience on hemispheric lateralization in musical feature processing. Neurosci Lett 496:141–145. doi:10.1016/j.neulet.2011.04.002. [PubMed] [Cross Ref]

    Article  CAS  Google Scholar 

  • Opris I, Hampson RE, Gerhardt GA, Berger TW, Deadwyler SA (2012) Columnar processing in primate pFC: evidence for executive control microcircuits. J Cogn Neurosci 24:2334–2347. doi:10.1162/jocn_a_00307. [PMC free article] [PubMed] [Cross Ref]

    Article  Google Scholar 

  • Paulsen JS, Romero R, Chan A, Davis AV, Heaton RK, Jeste DV (1996) Impairment in the semantic network in schizophrenia. Psychiatry Res 63:109–121. doi:10.1016/0165-1781(96)02901-0. [PubMed] [Cross Ref]

    Article  CAS  Google Scholar 

  • Pierce K, Haist F, Sedaghat F, Courchesne E (2004) The brain response to personally familiar faces in autism: findings of fusiform activity and beyond. Brain 127:2703–2716. doi:10.1093/brain/awh289. [PubMed] [Cross Ref]

    Article  Google Scholar 

  • Pizzarelli R, Cherubini E (2011) Alterations of GABAergic signaling in autism spectrum disorders. Neural Plast 2011:297153

    Article  Google Scholar 

  • Polleux F, Lauder JM (2004) Toward a developmental neurobiology of autism. Ment Retard Dev Disabil Res Rev 10:303–317

    Article  Google Scholar 

  • Rakic P (1995) A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci 18:383–388. doi:10.1016/0166-2236(95)93934-P. [PubMed] [Cross Ref]

    Article  CAS  Google Scholar 

  • Rodel M, Cook ND, Regard M, Landis T (1992) Hemispheric dissociation in judging semantic relations: complementarity for close and distant associates. Brain Lang 43:448–459. doi:10.1016/0093-934X(92)90111-Q. [PubMed] [Cross Ref]

    Article  CAS  Google Scholar 

  • Ropohl A, Sperling W, Elstner S, Tomandl B, Reulbach U, Kaltenhauser M et al (2004) Cortical activity associated with auditory hallucinations. Neuroreport 15:523–526. doi:10.1097/00001756-200403010-00028. [PubMed] [Cross Ref]

    Article  Google Scholar 

  • Rosenzweig MR (2002) Effects of differential experience on the brain and behaviour. Dev Neuropsychol 24:523–540

    Article  Google Scholar 

  • Rossell S. L., Rabe-Hesketh S., Shapleske J., David A. S. (1999). Is semantic fluency differentially impaired in schizophrenic patients with delusions? J. Clin Exp Neuropsychol 21 629–642 10.1076/jcen.21.5.629.865. [PubMed] [Cross Ref]

  • Rossion B, Dricot L, Devolder A, Bodart J-M, Crommelinck M, de Gelder B et al (2000) Hemispheric asymmetries for whole-based and part-based face processing in the human fusiform gyrus. J Cogn Neurosci 12:793–802. doi:10.1162/089892900562606. [PubMed] [Cross Ref]

    Article  CAS  Google Scholar 

  • Rubenstein JLR, Merzenich MM (2003) Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav 2:255–267

    Article  CAS  Google Scholar 

  • Savva GM, Wharton SB, Ince PG, Forster G, Matthews FE, Brayne C: Age, neuropathology and dementia. New Engl J Med 2009, 360: 2302–2309. 10.1056/NEJMoa0806142. View

  • Seldon HL (1981a) Structure of human auditory cortex: I. Cytoarchitectonics and dendritic distributions. Brain Res 229:277–294. doi:10.1016/0006-8993(81)90994-X. [PubMed] [Cross Ref]

    Article  CAS  Google Scholar 

  • Seldon HL (1981b) Structure of human auditory cortex: II. Axon distributions and morphological correlates of speech perception. Brain Res 229:295–310. doi:10.1016/0006-8993(81)90995-1. [PubMed] [Cross Ref]

    Article  CAS  Google Scholar 

  • Shergill SS, Brammer MJ, Williams SC, Murray RM, McGuire PK (2000) Mapping auditory hallucinations in schizophrenia using functional magnetic resonance imaging. Arch Gen Psychiatry 57:1033–1038. doi:10.1001/archpsyc.57.11.1033. [PubMed] [Cross Ref]

    Article  CAS  Google Scholar 

  • Simper R, Walker MA, Black G, Di Rosa E, Crow TJ, Chance SA (2011) The relationship between callosal axons, and cortical neurons in the planum temporale: alterations in schizophrenia. Neurosci Res 71:405–410. doi:10.1016/j.neures.2011.08.007. [PubMed] [Cross Ref]

    Article  CAS  Google Scholar 

  • Soulières I, Mottron L, Saumier D, Larochelle S (2007) Atypical categorical perception in autism: autonomy of discrimination? J Autism Dev Disord 37:481–490. doi:10.1007/s10803-006-0172-40. [PubMed] [Cross Ref]

    Article  Google Scholar 

  • Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW (2003) Mapping cortical change across the human life span. Nat Neurosci 6:309–315. doi:10.1038/nn1008

    Article  CAS  Google Scholar 

  • Spironelli C, Angrilli A, Stegagno L (2008) Failure of language lateralization in schizophrenia patients: an ERP study on early linguistic components. J Psychiatry Neurosci 33:235–243. [PMC free article] [PubMed]

    Google Scholar 

  • Stern Y (2002) What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc 8:448–460

    Article  Google Scholar 

  • Stern Y (2009) Cognitive reserve. Neuropsychologia 47:2015–2028. doi:10.1016/j.neuropsychologia.2009.03.004

    Article  Google Scholar 

  • Tallal P, Miller S, Fitch R (1993) Neurobiological basis of speech: a case for the preeminence of temporal processing. Ann N Y Acad Sci 682:27–47. doi:10.1111/j.1749-6632.1993.tb22957.x. [PubMed] [Cross Ref]

    Article  CAS  Google Scholar 

  • Taylor KI, Brugger P, Weniger D, Regard M (1999) Qualitative hemispheric differences in semantic category matching. Brain Lang 70:119–131. doi:10.1006/brln.1999.2148. [PubMed] [Cross Ref]

    Article  CAS  Google Scholar 

  • Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580. doi:10.1002/ana.410300410

    Article  CAS  Google Scholar 

  • Teunisse JP, de Gelder B (2001) Impaired categorical perception of facial expressions in high-functioning adolescents with autism. Child Neuropsychol 7:1–14. doi:10.1076/chin.7.1.1.3150. [PubMed] [Cross Ref]

    Article  CAS  Google Scholar 

  • Tononi G, Cirelli C (2003) Sleep and synaptic homeostasis: a hypothesis. Brain Res Bull 62(2):143–150

    Article  Google Scholar 

  • Tucker AM, Stern Y (2011) Cognitive reserve in aging. Curr Alzheimer Res 8(4):354–360

    Google Scholar 

  • Van Kooten IA, Palmen SJ, von Cappeln P, Steinbusch HW, Korr H, Heinsen H et al (2008) Neurons in the fusiform gyrus are fewer and smaller in autism. Brain 131:987–999. doi:10.1093/brain/awn033. [PubMed] [Cross Ref]

    Article  Google Scholar 

  • Van Veluw SJ, Sawyer EK, Clover L, Cousijn H, De Jager C, Esiri MM et al (2012) Prefrontal cortex cytoarchitecture in normal aging and Alzheimer’s disease: a relationship with IQ. Brain Struct Funct 217:797–808. doi:10.1007/s00429-012-0381-x. [PubMed] [Cross Ref]

    Article  Google Scholar 

  • Weisbrod M, Maier S, Harig S, Himmelsbach U, Spitzer M (1998) Lateralised semantic and indirect semantic priming effects in people with schizophrenia. Br J Psychiatry 172:142–146. doi:10.1192/bjp.172.2.142. [PubMed] [Cross Ref]

    Article  CAS  Google Scholar 

  • Yvert B, Crouzeix A, Bertrand O, Seither-Preisler A, Pantev C (2001) Multiple supratemporal sources of magnetic and electric auditory evoked middle latency components in humans. Cereb Cortex 11:411–423. doi:10.1093/cercor/11.5.411. [PubMed] [Cross Ref]

    Article  CAS  Google Scholar 

  • Zatorre RJ, Belin P (2001) Spectral and temporal processing in human auditory cortex. Cereb Cortex 11:946–953. doi:10.1093/cercor/11.10.946. [PubMed] [Cross Ref]

    Article  CAS  Google Scholar 

  • Zatorre RJ, Belin P, Penhune VB (2002) Structure and function of auditory cortex: music and speech. Trends Cogn Sci 6:37–46. doi:10.1016/S1364-6613(00)01816-7. [PubMed] [Cross Ref]

    Article  Google Scholar 

  • Zhu Q, Song Y, Hu S, Li X, Tian M, Zhen Z et al (2010) Heritability of the specific cognitive ability of face perception. Curr Biol 20:137–142. doi:10.1016/j.cub.2009.11.067. [PubMed] [Cross Ref]

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Steven A. Chance was supported by a pilot award (SFARI ID 307098) from the Simons Foundation, USA.

Conflict of Interest Statement

The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven A. Chance .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chance, S.A. (2017). Cortical Microstructures: Lateralization, Ageing, and Disruption Across the Lifespan. In: Opris, I., Casanova, M.F. (eds) The Physics of the Mind and Brain Disorders. Springer Series in Cognitive and Neural Systems, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-29674-6_18

Download citation

Publish with us

Policies and ethics