Skip to main content

Density Expansion of the Radial Distribution Function and Approximate Integral Equations

  • Chapter
  • First Online:
A Concise Course on the Theory of Classical Liquids

Part of the book series: Lecture Notes in Physics ((LNP,volume 923))

  • 1731 Accesses

Abstract

This chapter deals with the derivation of the coefficients of the radial distribution function in its expansion in powers of density. As in Chap. 3, the main steps involving diagrammatic manipulations are justified with simple examples. The classification of diagrams depending on their topology leads to the introduction of the hypernetted-chain and Percus–Yevick approximations, plus other approximate integral equations. The chapter ends with some relations in connection with the internal consistency among different thermodynamic routes in approximate theories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics (Wiley, New York, 1974)

    MATH  Google Scholar 

  2. M. Baus, J.L. Colot, Phys. Rev. A 36, 3912 (1987)

    Article  ADS  Google Scholar 

  3. M. Abramowitz, I.A. Stegun (eds.), Handbook of Mathematical Functions (Dover, New York, 1972)

    MATH  Google Scholar 

  4. F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark (eds.), NIST Handbook of Mathematical Functions (Cambridge University Press, New York, 2010)

    MATH  Google Scholar 

  5. J.A. Barker, D. Henderson, Can. J. Phys. 44, 3959 (1967)

    Article  ADS  Google Scholar 

  6. B.R.A. Nijboer, L. van Hove, Phys. Rev. 85, 777 (1952)

    Article  ADS  Google Scholar 

  7. F.H. Ree, N. Keeler, S.L. McCarthy, J. Chem. Phys. 44, 3407 (1966)

    Article  ADS  Google Scholar 

  8. A. Santos, A. Malijevský, Phys. Rev. E 75, 021201 (2007)

    Article  ADS  Google Scholar 

  9. T. Morita, Prog. Theor. Phys. 20, 920 (1958)

    Article  ADS  Google Scholar 

  10. J.M.J. van Leeuwen, J. Groeneveld, J. de Boer, Physica 25, 792 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  11. J.K. Percus, G.J. Yevick, Phys. Rev. 110, 1 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  12. F.H. Ree, W.G. Hoover, J. Chem. Phys. 41, 1635 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  13. J.A. Barker, D. Henderson, Rev. Mod. Phys. 48, 587 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  14. T. Morita, Prog. Theor. Phys. 23, 829 (1960)

    Article  ADS  Google Scholar 

  15. A. Santos, Phys. Rev. Lett. 109, 120601 (2012)

    Article  ADS  Google Scholar 

  16. E. Beltrán-Heredia, A. Santos, J. Chem. Phys. 140, 134507 (2014)

    Article  ADS  Google Scholar 

  17. M.S. Wertheim, Phys. Rev. Lett. 10, 321 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  18. E. Thiele, J. Chem. Phys. 39, 474 (1963)

    Article  ADS  Google Scholar 

  19. M.S. Wertheim, J. Math. Phys. 5, 643 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  20. R.J. Baxter, J. Chem. Phys. 49, 2770 (1968)

    Article  ADS  Google Scholar 

  21. J.L. Lebowitz, Phys. Rev. 133, A895 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  22. J.W. Perram, E.R. Smith, Chem. Phys. Lett. 35, 138 (1975)

    Article  ADS  Google Scholar 

  23. B. Barboy, Chem. Phys. 11, 357 (1975)

    Article  ADS  Google Scholar 

  24. C. Freasier, D.J. Isbister, Mol. Phys. 42, 927 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  25. E. Leutheusser, Physica A 127, 667 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  26. R.D. Rohrmann, A. Santos, Phys. Rev. E 76, 051202 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  27. R.D. Rohrmann, A. Santos, Phys. Rev. E 83, 011201 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  28. R.D. Rohrmann, A. Santos, Phys. Rev. E 84, 041203 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  29. J.P. Hansen, I.R. McDonald, Theory of Simple Liquids, 3rd edn. (Academic, London, 2006)

    MATH  Google Scholar 

  30. J.R. Solana, Perturbation Theories for the Thermodynamic Properties of Fluids and Solids (CRC Press, Boca Raton, 2013)

    Book  MATH  Google Scholar 

  31. L. Verlet, Mol. Phys. 41, 183 (1980)

    Article  ADS  Google Scholar 

  32. L. Verlet, Mol. Phys. 42, 1291 (1981)

    Article  ADS  Google Scholar 

  33. G.A. Martynov, G.N. Sarkisov, Mol. Phys. 49, 1495 (1983)

    Article  ADS  Google Scholar 

  34. F.J. Rogers, D.A. Young, Phys. Rev. A 30, 999 (1984)

    Article  ADS  Google Scholar 

  35. P. Ballone, G. Pastore, G. Galli, D. Gazzillo, Mol. Phys. 59, 275 (1986)

    Article  ADS  Google Scholar 

  36. L. Acedo, A. Santos, Phys. Lett. A 323, 427 (2004). Erratum: 376, 2274–2275 (2012)

    Article  ADS  Google Scholar 

  37. F.H. Stillinger, D.K. Stillinger, Physica A 244, 358 (1997)

    Article  ADS  Google Scholar 

  38. C. Marquest, T.A. Witten, J. Phys. France 50, 1267 (1989)

    Article  Google Scholar 

  39. C.N. Likos, H. Löwen, M. Watzlawek, B. Abbas, O. Jucknischke, J. Allgaier, D. Richter, Phys. Rev. Lett. 80, 4450 (1998)

    Article  ADS  Google Scholar 

  40. W. Schirmacher, Theory of Liquids and Other Disordered Media. A Short Introduction. Lecture Notes in Physics, vol. 887 (Springer, Cham, 2014)

    Google Scholar 

  41. B.M. Mladek, G. Kahl, M. Neuman, J. Chem. Phys. 124, 064503 (2006)

    Article  ADS  Google Scholar 

  42. E. Waisman, Mol. Phys. 25, 45 (1973)

    Article  ADS  Google Scholar 

  43. Y. Tang, J. Chem. Phys. 118, 4140 (2003)

    Article  ADS  Google Scholar 

  44. A. Santos, G. Manzano, J. Chem. Phys. 132, 144508 (2010)

    Article  ADS  Google Scholar 

  45. A. Santos, R. Fantoni, A. Giacometti, Phys. Rev. E 77, 051206 (2008)

    Article  ADS  Google Scholar 

  46. A. Santos, R. Fantoni, A. Giacometti, J. Chem. Phys. 131, 181105 (2009)

    Article  ADS  Google Scholar 

  47. A. Santos, J. Chem. Phys. 126, 116101 (2007)

    Article  ADS  Google Scholar 

  48. A. Santos, J. Chem. Phys. 123, 104102 (2005)

    Article  ADS  Google Scholar 

  49. A. Santos, Mol. Phys. 104, 3411 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Santos, A. (2016). Density Expansion of the Radial Distribution Function and Approximate Integral Equations. In: A Concise Course on the Theory of Classical Liquids. Lecture Notes in Physics, vol 923. Springer, Cham. https://doi.org/10.1007/978-3-319-29668-5_6

Download citation

Publish with us

Policies and ethics