Spatial Correlation Functions and Thermodynamic Routes

  • Andrés Santos
Part of the Lecture Notes in Physics book series (LNP, volume 923)


This chapter introduces the reduced (or marginal) distribution functions describing groups of s particles. The fundamental one is the pair configurational distribution function, from which the radial distribution function g(r) is defined as a key quantity in the statistical-mechanical description of liquids. Most of the chapter is devoted to the derivation of thermodynamic quantities in terms of integrals involving g(r). Apart from the conventional compressibility, energy, and virial routes, the less known chemical-potential and free-energy routes are worked out.


Radial Distribution Function Isothermal Compressibility Statistical Ensemble Simulation Computer Simulation Direct Correlation Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R.J. Baxter, J. Chem. Phys. 41, 553 (1964)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    G.E. Uhlenbeck, P.C. Hemmer, M. Kac, J. Math. Phys. 4, 229 (1963)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987)zbMATHGoogle Scholar
  4. 4.
    D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, 2nd edn. (Academic, San Diego, 2002)zbMATHGoogle Scholar
  5. 5.
    Simulations performed by the author with the Glotzilla library (2015),
  6. 6.
    J. Kolafa, S. Labík, A. Malijevský, Mol. Phys. 100, 2629 (2002). See also ADSCrossRefGoogle Scholar
  7. 7.
    S. Labík, A. Malijevský, Mol. Phys. 53, 381 (1984)ADSCrossRefGoogle Scholar
  8. 8.
    R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics (Wiley, New York, 1974)zbMATHGoogle Scholar
  9. 9.
    J.P. Hansen, I.R. McDonald, Theory of Simple Liquids, 3rd edn. (Academic, London, 2006)zbMATHGoogle Scholar
  10. 10.
    D. Heyes, The Liquid State: Applications of Molecular Simulations (Wiley, Chichester, 1998)Google Scholar
  11. 11.
    B. Widom, J. Chem. Phys. 39, 2808 (1963)ADSCrossRefGoogle Scholar
  12. 12.
    L.E. Reichl, A Modern Course in Statistical Physics, 1st edn. (University of Texas Press, Austin, 1980)zbMATHGoogle Scholar
  13. 13.
    L. Onsager, Chem. Rev. 13, 73 (1933)CrossRefGoogle Scholar
  14. 14.
    T.L. Hill, Statistical Mechanics (McGraw-Hill, New York, 1956)zbMATHGoogle Scholar
  15. 15.
    H. Reiss, H.L. Frisch, J.L. Lebowitz, J. Chem. Phys. 31, 369 (1959)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    M. Mandell, H. Reiss, J. Stat. Phys. 13, 113 (1975)ADSCrossRefGoogle Scholar
  17. 17.
    A. Santos, Phys. Rev. Lett. 109, 120601 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    A. Santos, R.D. Rohrmann, Phys. Rev. E 87, 052138 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    J.G. Kirkwood, F.P. Buff, J. Chem. Phys. 19, 774 (1951)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    A. Ben-Naim, Molecular Theory of Solutions (Oxford University Press, Oxford, 2006)zbMATHGoogle Scholar
  21. 21.
    A.B. Bhatia, D.E. Thornton, Phys. Rev. B 8, 3004 (1970)ADSCrossRefGoogle Scholar
  22. 22.
    N.W. Ashcroft, D.C. Langreth, Phys. Rev. 156, 685 (1967)ADSCrossRefGoogle Scholar
  23. 23.
    J.S. Rowlinson, F. Swinton, Liquids and Liquid Mixtures (Butterworth, London, 1982)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Andrés Santos
    • 1
  1. 1.Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx)Universidad de ExtremaduraBadajozSpain

Personalised recommendations