Advertisement

Density Expansion of the Equation of State

  • Andrés Santos
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 923)

Abstract

This chapter is mainly devoted to the formal derivation of the virial coefficients characterizing the representation of the equation of state as a series expansion in powers of density. This requires the introduction of diagrammatic techniques, the main steps being justified by simple examples without rigorous proofs. The chapter continues with the analysis of the second virial coefficient for simple model interactions and of higher-order virial coefficients for hard spheres, both one-component and multicomponent. Finally, some simple approximate equations of state for one-component and multicomponent hard-sphere liquids are described.

Keywords

Monte Carlo Hard Sphere Virial Coefficient Helmholtz Free Energy Packing Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J.E. Mayer, M. Goeppert Mayer, Statistical Mechanics (Wiley, New York, 1940)zbMATHGoogle Scholar
  2. 2.
    A. Mulero (ed.), Theory and Simulation of Hard-Sphere Fluids and Related Systems. Lecture Notes in Physics, vol. 753 (Springer, Berlin, 2008)Google Scholar
  3. 3.
    J.A. Barker, D. Henderson, Rev. Mod. Phys. 48, 587 (1976)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    J.R. Solana, Perturbation Theories for the Thermodynamic Properties of Fluids and Solids (CRC Press, Boca Raton, 2013)zbMATHCrossRefGoogle Scholar
  5. 5.
    W. Schirmacher, Theory of Liquids and Other Disordered Media. A Short Introduction. Lecture Notes in Physics, vol. 887 (Springer, Cham, 2014)Google Scholar
  6. 6.
    R. Piazza, Soft Matter. The Stuff that Dreams Are Made of (Springer, Dordrecht, 2011)Google Scholar
  7. 7.
    C.N. Likos, Phys. Rep. 348, 267 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    P.N. Pusey, E. Zaccarelli, C. Valeriani, E. Sanz, W.C.K. Poon, M.E. Cates, Philos. Trans. R. Soc. A 367, 4993 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    C. Marquest, T.A. Witten, J. Phys. Fr. 50, 1267 (1989)CrossRefGoogle Scholar
  10. 10.
    W. Klein, H. Gould, R.A. Ramos, I. Clejan, A.I. Mel’cuk, Physica A 205, 738 (1994)ADSCrossRefGoogle Scholar
  11. 11.
    C.N. Likos, M. Watzlawek, H. Löwen, Phys. Rev. E 58, 3135 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    M. Schmidt, J. Phys. Condens. Matter 11, 10163 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    M.J. Fernaud, E. Lomba, L.L. Lee, J. Chem. Phys. 112, 810 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Rosenfeld, M. Schmidt, M. Watzlawek, H. Löwen, Phys. Rev. E 62, 5006 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    C.N. Likos, A. Lang, M. Watzlawek, H. Löwen, Phys. Rev. E 63, 031206 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    M. Schmidt, M. Fuchs, J. Chem. Phys. 117, 6308 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    S.C. Kim, S.H. Suh, J. Chem. Phys. 117, 9880 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    L. Acedo, A. Santos, Phys. Lett. A 323, 427 (2004). Erratum: 376, 2274–2275 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    F.H. Stillinger, D.K. Stillinger, Physica A 244, 358 (1997)ADSCrossRefGoogle Scholar
  20. 20.
    C.N. Likos, H. Löwen, M. Watzlawek, B. Abbas, O. Jucknischke, J. Allgaier, D. Richter, Phys. Rev. Lett. 80, 4450 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    P.C. Hemmer, G. Stell, Phys. Rev. Lett. 24, 1284 (1970)ADSCrossRefGoogle Scholar
  22. 22.
    Z. Yan, S.V. Buldyrev, N. Giovambattista, H.E. Stanley, Phys. Rev. Lett. 95, 130604 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    R.J. Baxter, J. Chem. Phys. 49, 2770 (1968)ADSCrossRefGoogle Scholar
  24. 24.
    G. Stell, J. Stat. Phys. 63, 1203 (1991)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    B. Borštnik, C.G. Jesudason, G. Stell, J. Chem. Phys. 106, 9762 (1997)ADSCrossRefGoogle Scholar
  26. 26.
    S.H. Chen, J. Rouch, F. Sciortino, P. Tartaglia, J. Phys. Condens. Matter 6, 109855 (1994)Google Scholar
  27. 27.
    H. Verduin, J.K.G. Dhont, J. Colloid Interface Sci. 172, 425 (1995)CrossRefGoogle Scholar
  28. 28.
    D. Rosenbaum, P.C. Zamora, C.F. Zukoski, Phys. Rev. Lett. 76, 150 (1996)ADSCrossRefGoogle Scholar
  29. 29.
    D. Pontoni, S. Finet, T. Narayanan, A.R. Rennie, J. Chem. Phys. 119, 6157 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    S. Buzzaccaro, R. Rusconi, R. Piazza, Phys. Rev. Lett. 99, 098301 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    R. Piazza, V. Peyre, V. Degiorgio, Phys. Rev. E 58, R2733 (1998)ADSCrossRefGoogle Scholar
  32. 32.
    M.G. Noro, D. Frenkel, J. Chem. Phys. 113, 2941 (2000)ADSCrossRefGoogle Scholar
  33. 33.
    M.A.G. Maestre, R. Fantoni, A. Giacometti, A. Santos, J. Chem. Phys. 138, 094904 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    M. Thiesen, Ann. Phys. 260, 467 (1885)CrossRefGoogle Scholar
  35. 35.
    H. Kamerlingh Onnes, Commun. Phys. Lab. Univ. Leiden 71, 3 (1901). Reprinted in Expression of the equation of state of gases and liquids by means of series, in Through Measurement to Knowledge. Boston Studies in the Philosophy and History of Science, vol. 124 (Springer, Netherlands, 1991), pp. 146–163Google Scholar
  36. 36.
    E.G.D. Cohen, Einstein and Boltzmann: Determinism and Probability or The Virial Expansion Revisited (2013), http://arxiv.org/abs/1302.2084 Google Scholar
  37. 37.
    L.E. Reichl, A Modern Course in Statistical Physics, 1st edn. (University of Texas Press, Austin, 1980)zbMATHGoogle Scholar
  38. 38.
    E. Enciso, N.G. Almarza, M.A. González, F.J. Bermejo, Phys. Rev. E 57, 4486 (1998)ADSCrossRefGoogle Scholar
  39. 39.
    A.J. Schultz, D.A. Kofke, Phys. Rev. E 90, 023301 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    The On-Line Encyclopedia of Integer Sequences (OEIS) (1996), http://oeis.org/A002218, http://oeis.org/A013922
  41. 41.
    R.J. Wheatley, Phys. Rev. Lett. 110, 200601 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    C. Zhang, B.M. Pettitt, Mol. Phys. 112, 1427 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    R.J. Wheatley, Mol. Phys. 93, 965 (1998)ADSCrossRefGoogle Scholar
  44. 44.
    R.J. Wheatley, J. Chem. Phys. 111, 5455 (1999)ADSCrossRefGoogle Scholar
  45. 45.
    C. Barrio, J.R. Solana, in Theory and Simulation of Hard-Sphere Fluids and Related Systems, ed. by A. Mulero. Lecture Notes in Physics, vol. 753 (Springer, Berlin, 2008), pp. 133–182Google Scholar
  46. 46.
    S. Labík, J. Kolafa, Phys. Rev. E 80, 051122 (2009). Erratum: 84, 069901 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    M. Abramowitz, I.A. Stegun (eds.), Handbook of Mathematical Functions (Dover, New York, 1972)zbMATHGoogle Scholar
  48. 48.
    F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark (eds.), NIST Handbook of Mathematical Functions (Cambridge University Press, New York, 2010)zbMATHGoogle Scholar
  49. 49.
    A. Santos, in 5th Warsaw School of Statistical Physics, ed. by B. Cichocki, M. Napiórkowski, J. Piasecki (Warsaw University Press, Warsaw, 2014). http://arxiv.org/abs/1310.5578
  50. 50.
    A. Santos, Second Virial Coefficients for the Lennard-Jones (2n-n) Potential. Wolfram Demonstrations Project (2012), http://demonstrations.wolfram.com/SecondVirialCoefficientsForTheLennardJones2nNPotential/
  51. 51.
    A. Erdélyi, Asymptotic Expansions (Dover, New York, 1956)Google Scholar
  52. 52.
    N. Clisby, B. McCoy, J. Stat. Phys. 114, 1361 (2004)ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    I. Lyberg, J. Stat. Phys. 119, 747 (2005)ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    K.W. Kratky, J. Stat. Phys. 27, 533 (1982)ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    N. Clisby, B.M. McCoy, J. Stat. Phys. 114, 1343 (2004)ADSMathSciNetCrossRefGoogle Scholar
  56. 56.
    S. Labík, J. Kolafa, A. Malijevský, Phys. Rev. E 71, 021105 (2005)ADSCrossRefGoogle Scholar
  57. 57.
    N. Clisby, B.M. McCoy, Pramana 64, 775 (2005)ADSCrossRefGoogle Scholar
  58. 58.
    N. Clisby, B.M. McCoy, J. Stat. Phys. 122, 15 (2006)ADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    M. Luban, A. Baram, J. Chem. Phys. 76, 3233 (1982)ADSCrossRefGoogle Scholar
  60. 60.
    M. Baus, J.L. Colot, Phys. Rev. A 36, 3912 (1987)ADSCrossRefGoogle Scholar
  61. 61.
    R.D. Rohrmann, A. Santos, Phys. Rev. E 76, 051202 (2007)ADSMathSciNetCrossRefGoogle Scholar
  62. 62.
    J.H. Nairn, J.E. Kilpatrick, Am. J. Phys. 40, 503 (1972)ADSCrossRefGoogle Scholar
  63. 63.
    B.R.A. Nijboer, L. van Hove, Phys. Rev. 85, 777 (1952)ADSCrossRefGoogle Scholar
  64. 64.
    R.D. Rohrmann, M. Robles, M. López de Haro, A. Santos, J. Chem. Phys. 129, 014510 (2008)ADSCrossRefGoogle Scholar
  65. 65.
    H.L. Frisch, N. Rivier, D. Wyler, Phys. Rev. Lett. 54, 2061 (1985)ADSMathSciNetCrossRefGoogle Scholar
  66. 66.
    H.O. Carmesin, H. Frisch, J. Percus, J. Stat. Phys. 63, 791 (1991)ADSCrossRefGoogle Scholar
  67. 67.
    R.D. Rohrmann, A. Santos, Phys. Rev. E 83, 011201 (2011)ADSMathSciNetCrossRefGoogle Scholar
  68. 68.
    S. Torquato, F.H. Stillinger, Phys. Rev. E 68, 041113 (2003)ADSMathSciNetCrossRefGoogle Scholar
  69. 69.
    S. Torquato, F.H. Stillinger, Exp. Math. 15, 307 (2006)MathSciNetCrossRefGoogle Scholar
  70. 70.
    A. Santos, S.B. Yuste, M. López de Haro, Mol. Phys. 99, 1959 (2001)ADSCrossRefGoogle Scholar
  71. 71.
    R. Blaak, Mol. Phys. 95, 695 (1998)ADSCrossRefGoogle Scholar
  72. 72.
    I. Urrutia, Phys. Rev. E 84, 062101 (2011)ADSCrossRefGoogle Scholar
  73. 73.
    F. Saija, G. Fiumara, P.V. Giaquinta, Mol. Phys. 87, 991 (1996). Erratum: 92, 1089 (1997)ADSCrossRefGoogle Scholar
  74. 74.
    F. Saija, G. Fiumara, P.V. Giaquinta, Mol. Phys. 89, 1181 (1996)ADSGoogle Scholar
  75. 75.
    F. Saija, G. Fiumara, P.V. Giaquinta, Mol. Phys. 90, 679 (1997)ADSCrossRefGoogle Scholar
  76. 76.
    E. Enciso, N.G. Almarza, D.S. Calzas, M.A. González, Mol. Phys. 92, 173 (1997)ADSCrossRefGoogle Scholar
  77. 77.
    R.J. Wheatley, Mol. Phys. 93, 665 (1998)ADSGoogle Scholar
  78. 78.
    R.J. Wheatley, F. Saija, P.V. Giaquinta, Mol. Phys. 94, 877 (1998)ADSCrossRefGoogle Scholar
  79. 79.
    F. Saija, G. Fiumara, P.V. Giaquinta, J. Chem. Phys. 108, 9098 (1998)ADSCrossRefGoogle Scholar
  80. 80.
    R.J. Wheatley, Mol. Phys. 96, 1805 (1999)ADSCrossRefGoogle Scholar
  81. 81.
    E. Enciso, N.G. Almarza, M.A. González, F.J. Bermejo, Mol. Phys. 100, 1941 (2002)ADSCrossRefGoogle Scholar
  82. 82.
    A.Y. Vlasov, A.J. Masters, Fluid Phase Equilib. 212, 183 (2003)CrossRefGoogle Scholar
  83. 83.
    G. Pellicane, C. Caccamo, P.V. Giaquinta, F. Saija, J. Phys. Chem. B 111, 4503 (2007)CrossRefGoogle Scholar
  84. 84.
    M. López de Haro, A. Malijevský, S. Labík, Collect. Czech. Chem. Commun. 75, 359 (2010)CrossRefGoogle Scholar
  85. 85.
    F. Saija, Phys. Chem. Chem. Phys. 13, 11885 (2011)CrossRefGoogle Scholar
  86. 86.
    F. Saija, A. Santos, S.B. Yuste, M. López de Haro, J. Chem. Phys. 136, 184505 (2012)ADSCrossRefGoogle Scholar
  87. 87.
    A. Mulero, C.A. Galán, M.I. Parra, F. Cuadros, in Theory and Simulation of Hard-Sphere Fluids and Related Systems, ed. by A. Mulero. Lecture Notes in Physics, vol. 753 (Springer, Berlin, 2008), pp. 37–109Google Scholar
  88. 88.
    C.M. Bender, S.A. Orszag, Advanced Mathematical Methods for Scientists and Engineers (McGraw-Hill, Auckland, 1987)zbMATHGoogle Scholar
  89. 89.
    D. Henderson, Mol. Phys. 30, 971 (1975)ADSCrossRefGoogle Scholar
  90. 90.
    L. Verlet, D. Levesque, Mol. Phys. 46, 969 (1982)ADSCrossRefGoogle Scholar
  91. 91.
    A. Mulero, F. Cuadros, C. Galán, J. Chem. Phys. 107, 6887 (1997)ADSCrossRefGoogle Scholar
  92. 92.
    S. Luding, Phys. Rev. E 63, 042201 (2001)ADSCrossRefGoogle Scholar
  93. 93.
    S. Luding, O. Strauß, in Granular Gases, ed. by T. Pöschel, S. Luding. Lecture Notes in Physics, vol. 564 (Springer, Berlin, 2001), pp. 389–409Google Scholar
  94. 94.
    S. Luding, A. Santos, J. Chem. Phys. 121, 8458 (2004)ADSCrossRefGoogle Scholar
  95. 95.
    A. Santos, M. López de Haro, S.B. Yuste, J. Chem. Phys. 103, 4622 (1995)ADSCrossRefGoogle Scholar
  96. 96.
    M. López de Haro, A. Santos, S.B. Yuste, Eur. J. Phys. 19, 281 (1998)CrossRefGoogle Scholar
  97. 97.
    H. Reiss, H.L. Frisch, J.L. Lebowitz, J. Chem. Phys. 31, 369 (1959)ADSMathSciNetCrossRefGoogle Scholar
  98. 98.
    E. Helfand, H.L. Frisch, J.L. Lebowitz, J. Chem. Phys. 34, 1037 (1961)ADSCrossRefGoogle Scholar
  99. 99.
    J.J. Erpenbeck, M.J. Luban, Phys. Rev. A 32, 2920 (1985)ADSCrossRefGoogle Scholar
  100. 100.
    N.F. Carnahan, K.E. Starling, J. Chem. Phys. 51, 635 (1969)ADSCrossRefGoogle Scholar
  101. 101.
    J.L. Lebowitz, E. Helfand, E. Praestgaard, J. Chem. Phys. 43, 774 (1965)ADSCrossRefGoogle Scholar
  102. 102.
    J. Kolafa, S. Labík, A. Malijevský, Phys. Chem. Chem. Phys. 6, 2335 (2004). See also http://www.vscht.cz/fch/software/hsmd/ CrossRefGoogle Scholar
  103. 103.
    L.A. Fernández, V. Martín-Mayor, B. Seoane, P. Verrocchio, Phys. Rev. Lett. 108, 165701 (2012)ADSCrossRefGoogle Scholar
  104. 104.
    A. Santos, M. López de Haro, J. Chem. Phys. 130, 214104 (2009)ADSCrossRefGoogle Scholar
  105. 105.
    M. Luban, J.P.J. Michels, Phys. Rev. A 41, 6796 (1990)ADSCrossRefGoogle Scholar
  106. 106.
    D. Henderson, P.J. Leonard, Proc. Natl. Acad. Sci. U. S. A. 67, 1818 (1970)ADSCrossRefGoogle Scholar
  107. 107.
    D. Henderson, P.J. Leonard, Proc. Natl. Acad. Sci. U. S. A. 68, 2354 (1971)ADSCrossRefGoogle Scholar
  108. 108.
    M. López de Haro, S.B. Yuste, A. Santos, in Theory and Simulation of Hard-Sphere Fluids and Related Systems, ed. by A. Mulero. Lecture Notes in Physics, vol. 753 (Springer, Berlin, 2008), pp. 183–245Google Scholar
  109. 109.
    A. Santos, S.B. Yuste, M. López de Haro, Mol. Phys. 96, 1 (1999)ADSGoogle Scholar
  110. 110.
    A. Santos, M. López de Haro, S.B. Yuste, J. Chem. Phys. 122, 024514 (2005)ADSCrossRefGoogle Scholar
  111. 111.
    C. Barrio, J.R. Solana, Mol. Phys. 97, 797 (1999)ADSCrossRefGoogle Scholar
  112. 112.
    C. Barrio, J.R. Solana, Phys. Rev. E 63, 011201 (2001)ADSCrossRefGoogle Scholar
  113. 113.
    J.T. Jenkins, F. Mancini, J. Appl. Mech. 54, 27 (1987)ADSCrossRefGoogle Scholar
  114. 114.
    J.A. Gualtieri, J.M. Kincaid, G. Morrison, J. Chem. Phys. 77, 521 (1982)ADSCrossRefGoogle Scholar
  115. 115.
    P. Sollich, P.B. Warren, M.E. Cates, Adv. Chem. Phys. 116, 265 (2001)Google Scholar
  116. 116.
    P. Sollich, J. Phys. Condens. Matter 14, R79 (2002)ADSCrossRefGoogle Scholar
  117. 117.
    A. Santos, Phys. Rev. E 86, 040102(R) (2012)Google Scholar
  118. 118.
    A. Santos, J. Chem. Phys. 136, 136102 (2012)ADSCrossRefGoogle Scholar
  119. 119.
    H. Reiss, H.L. Frisch, E. Helfand, J.L. Lebowitz, J. Chem. Phys. 32, 119 (1960)ADSMathSciNetCrossRefGoogle Scholar
  120. 120.
    Y. Rosenfeld, Phys. Rev. Lett. 63, 980 (1989)ADSCrossRefGoogle Scholar
  121. 121.
    R. Roth, R. Evans, A. Lang, G. Kahl, J. Phys. Condens. Matter 14, 12063 (2002)ADSCrossRefGoogle Scholar
  122. 122.
    R. Roth, J. Phys. Condens. Matter 22, 063102 (2010)ADSCrossRefGoogle Scholar
  123. 123.
    V. Ogarko, S. Luding, J. Chem. Phys. 136, 124508 (2012)ADSCrossRefGoogle Scholar
  124. 124.
    M. Mandell, H. Reiss, J. Stat. Phys. 13, 113 (1975)ADSCrossRefGoogle Scholar
  125. 125.
    Y. Rosenfeld, J. Chem. Phys. 89, 4272 (1988)ADSCrossRefGoogle Scholar
  126. 126.
    M. Heying, D. Corti, J. Phys. Chem. B 108, 19756 (2004)CrossRefGoogle Scholar
  127. 127.
    A. Santos, S.B. Yuste, M. López de Haro, G. Odriozola, V. Ogarko, Phys. Rev. E 89, 040302(R) (2014)Google Scholar
  128. 128.
    J.F. Lutsko, Phys. Rev. E 87, 014103 (2013)ADSCrossRefGoogle Scholar
  129. 129.
    H. Hansen-Goos, M. Mortazavifar, M. Oettel, R. Roth, Phys. Rev. E 91, 052121 (2015)ADSCrossRefGoogle Scholar
  130. 130.
    Y. Rosenfeld, M. Schmidt, H. Löwen, P. Tarazona, Phys. Rev. E 55, 4245 (1997)ADSCrossRefGoogle Scholar
  131. 131.
    A. Santos, S.B. Yuste, M. López de Haro, V. Ogarko, Equation of state of polydisperse hard-disk mixtures (2016, in preparation)Google Scholar
  132. 132.
    P.N. Pusey, J. Phys. France 48, 709 (1987)CrossRefGoogle Scholar
  133. 133.
    R. Evans, in Fundamentals of Inhomogeneous Fluids, ed. by D. Henderson (Dekker, New York, 1992)Google Scholar
  134. 134.
    P. Tarazona, J.A. Cuesta, Y. Martínez-Ratón, in Theory and Simulation of Hard-Sphere Fluids and Related Systems, ed. by A. Mulero. Lecture Notes in Physics, vol. 753 (Springer, Berlin, 2008), pp. 247–341Google Scholar
  135. 135.
    R. Evans, in 3rd Warsaw School of Statistical Physics, ed. by B. Cichocki, M. Napiórkowski, J. Piasecki (Warsaw University Press, Warsaw, 2010), pp. 43–85. http://agenda.albanova.se/getFile.py/access?contribId=260&resId=251&materialId=250&confId=2509
  136. 136.
    H. Löwen, in 3rd Warsaw School of Statistical Physics, ed. by B. Cichocki, M. Napiórkowski, J. Piasecki (Warsaw University Press, Warsaw, 2010), pp. 87–121. http://www2.thphy.uni-duesseldorf.de/~hlowen/doc/ra/ra0025.pdf
  137. 137.
    J.F. Lutsko, Adv. Chem. Phys. 144, 1 (2010)Google Scholar
  138. 138.
    G. Parisi, F. Zamponi, Rev. Mod. Phys. 82, 789 (2010)ADSCrossRefGoogle Scholar
  139. 139.
    L. Berthier, G. Biroli, Rev. Mod. Phys. 3, 587 (2011)ADSCrossRefGoogle Scholar
  140. 140.
    J. Kurchan, in 4th Warsaw School of Statistical Physics, ed. by B. Cichocki, M. Napiórkowski, J. Piasecki (Warsaw University Press, Warsaw, 2012), pp. 131–167. https://www.icts.res.in/media/uploads/Program/Files/kurchan.pdf
  141. 141.
    R. Fantoni, A. Malijevský, A. Santos, A. Giacometti, Mol. Phys. 109, 2723 (2011)ADSCrossRefGoogle Scholar
  142. 142.
    M.E. Fisher, D. Ruelle, J. Math. Phys. 7, 260 (1966)ADSMathSciNetCrossRefGoogle Scholar
  143. 143.
    D. Ruelle, Statistical Mechanics: Rigorous Results (World Scientific, Singapore, 1999)zbMATHCrossRefGoogle Scholar
  144. 144.
    P. Pajuelo, A. Santos, Classical Scattering with a Penetrable Square-Well Potential, Wolfram Demonstrations Project (2011), http://demonstrations.wolfram.com/ClassicalScatteringWithAPenetrableSquareWellPotential
  145. 145.
    S.M. Blinder, Second Virial Coefficients Using the Lennard-Jones Potential, Wolfram Demonstrations Project (2010), http://demonstrations.wolfram.com/SecondVirialCoefficientsUsingTheLennardJonesPotential/
  146. 146.
    R.B. Stewart, R.T. Jacobsen, J. Phys. Chem. Ref. Data 18, 639 (1989). http://www.nist.gov/data/PDFfiles/jpcrd363.pdf ADSCrossRefGoogle Scholar
  147. 147.
    A. Santos, Virial Coefficients for a Hard-Sphere Mixture, Wolfram Demonstrations Project (2014), http://demonstrations.wolfram.com/VirialCoefficientsForAHardSphereMixture/

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Andrés Santos
    • 1
  1. 1.Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx)Universidad de ExtremaduraBadajozSpain

Personalised recommendations