Context-Sensitive Recommender Systems



For me context is the key – from that comes the understanding


Recommender System Rating Matrix Data Cube Tensor Factorization Implicit Feedback 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [2]
    G. Abowd, C. Atkeson, J. Hong, S. Long, R. Kooper, and M. Pinkerton. Cyberguide: A mobile context-aware tour guide. Wireless Networks, 3(5), pp. 421–433, 1997.CrossRefGoogle Scholar
  2. [3]
    G. Abowd, A. Dey, P. Brown, N. Davies, M. Smith, and P. Steggles. Towards a better understanding of context and context-awareness. Handheld and Ubiquitous Computing, pp. 304–307, 1999.Google Scholar
  3. [5]
    G. Adomavicius, and A. Tuzhilin. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), pp. 734–749, 2005.CrossRefGoogle Scholar
  4. [6]
    G. Adomavicius, R. Sankaranarayanan, S. Sen, and A. Tuzhilin. Incorporating contextual information in recommender systems using a multidimensional approach. ACM Transactions on Information Systems, 23(1), pp. 103–145, 2005.CrossRefGoogle Scholar
  5. [7]
    G. Adomavicius and A. Tuzhilin. Context-aware recommender systems. Recommender Systems handbook, pp. 217–253, Springer, NY, 2011.Google Scholar
  6. [8]
    G. Adomavicius and A. Tuzhilin. Incorporating context into recommender systems using multidimensional rating estimation methods. International Workshop on Web Personalization, Recommender Systems and Intelligent User Interfaces (WPRSIUI), 2005.Google Scholar
  7. [9]
    G. Adomavicius and A. Tuzhilin. Multidimensional recommender systems: a data warehousing approach. International Workshop on Electronic Commerce. Lecture Notes in Computer Science, Springer, Vol. 2232, pp. 180–192, 2001.Google Scholar
  8. [10]
    G. Adomavicius, A. Tuzhilin, and R. Zheng. REQUEST: A query language for customizing recommendations. Information Systems Research, 22(1), pp. 99–117, 2011.CrossRefGoogle Scholar
  9. [18]
    C. Aggarwal. Data classification: algorithms and applications. CRC Press, 2014.Google Scholar
  10. [22]
    C. Aggarwal. Data mining: the textbook. Springer, New York, 2015.Google Scholar
  11. [39]
    R. Agrawal, R. Rantzau, and E. Terzi. Context-sensitive ranking. ACM SIGMOD Conference, pp. 383–394, 2006.Google Scholar
  12. [40]
    H. Ahn, K. Kim, and I. Han. Mobile advertisement recommender system using collaborative filtering: MAR-CF. Proceedings of the 2006 Conference of the Korea Society of Management Information Systems, 2006.Google Scholar
  13. [47]
    S. Anand and B. Mobasher. Contextual recommendation, Lecture Notes in Artificial Intelligence, Springer, 4737, pp. 142–160, 2007.Google Scholar
  14. [50]
    A. Ansari, S. Essegaier, and R. Kohli. Internet recommendation systems. Journal of Marketing Research, 37(3), pp. 363–375, 2000.CrossRefGoogle Scholar
  15. [61]
    L. Baltrunas and X. Amatriain. Towards time-dependant recommendation based on implicit feedback. RecSys Workshop on Context-Aware Recommender Systems, 2009.Google Scholar
  16. [62]
    L. Baltrunas and F. Ricci. Context-dependant items generation in collaborative filtering. RecSys Workshop on Context-Aware Recommender Systems, 2009.Google Scholar
  17. [63]
    L. Baltrunas, B. Ludwig, and F. Ricci. Matrix factorization techniques for context aware recommendation. ACM Conference on Recommender systems, pp. 301–304, 2011.Google Scholar
  18. [134]
    I. Cantador and P. Castells. Semantic contextualisation in a news recommender system. Workshop on Context-Aware Recommender Systems, 2009.Google Scholar
  19. [145]
    S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology. ACM SIGMOD Record, 26(1), pp. 65–74, 1997.CrossRefGoogle Scholar
  20. [147]
    G. Chen and D. Kotz. A survey of context-aware mobile computing research. Technical Report TR2000-381, Department of Computer Science, Dartmouth College, 2000.Google Scholar
  21. [151]
    T. Chen, Z. Zheng, Q. Lu, W. Zhang, and Y. Yu. Feature-based matrix factorization. arXiv preprint arXiv:1109.2271, 2011.Google Scholar
  22. [188]
    P. Dourish, What we talk about when we talk about context. Personal and ubiquitous computing, 8(1), pp. 19–30, 2004.CrossRefGoogle Scholar
  23. [212]
    Z. Gantner, S. Rendle, and L. Schmidt-Thieme. Factorization models for context-/time-aware movie recommendations. Workshop on Context-Aware Movie Recommendation, pp. 14–19, 2010.Google Scholar
  24. [294]
    A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver. Multiverse recommendation: N-dimensional tensor factorization for context-aware collaborative filtering. ACM Conference on Recommender Systems, pp. 79–86, 2010.Google Scholar
  25. [332]
    L. Lathauwer, B. Moor, and J. Vandewalle. A multilinear singular value decomposition. SIAM Journal on Matrix Analysis and Applications, 21(4), pp. 1253–1278. 2000.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [336]
    S. Lawrence. Context in Web search. IEEE Data Engineering Bulletin, 23(3):25, 2000.Google Scholar
  27. [374]
    S. Lombardi, S. Anand, and M. Gorgoglione. Context and customer behaviour in recommendation. Workshop on Customer Aware Recommender Systems, 2009.Google Scholar
  28. [458]
    K. Oku, S. Nakajima, J. Miyazaki, and S. Uemura. Context-aware SVM for context-dependent information recommendation. International Conference on Mobile Data Management, pp. 109–109, 2006.Google Scholar
  29. [466]
    C. Palmisano, A. Tuzhilin, and M. Gorgoglione. Using context to improve predictive modeling of customers in personalization applications. IEEE Transactions on Knowledge and Data Engineering, 20(11), pp. 1535–1549, 2008.CrossRefGoogle Scholar
  30. [470]
    U. Panniello, A. Tuzhilin, and M. Gorgoglione. Comparing context-aware recommender systems in terms of accuracy and diversity. User Modeling and User-Adapted Interaction, 24: pp. 35–65, 2014.CrossRefGoogle Scholar
  31. [471]
    U. Panniello, A. Tuzhilin, M. Gorgoglione, C. Palmisano, and A. Pedone. Experimental comparison of pre- vs. post-filtering approaches in context-aware recommender systems. ACM Conference on Recommender Systems, pp. 265–268, 2009.Google Scholar
  32. [493]
    S. Rendle. Factorization machines. IEEE International Conference on Data Mining, pp. 995–100, 2010.Google Scholar
  33. [494]
    S. Rendle. Factorization machines with libfm. ACM Transactions on Intelligent Systems and Technology (TIST), 3(3), 57, 2012.Google Scholar
  34. [495]
    S. Rendle. Context-aware ranking with factorization models. Studies in Computational Intelligence, Chapter 9, Springer, 2011.Google Scholar
  35. [496]
    S. Rendle, Z. Gantner, C. Freudenthaler, and L. Schmidt-Thieme. Fast context-aware recommendations with factorization machines. ACM SIGIR Conference, pp. 635–644, 2011.Google Scholar
  36. [498]
    S. Rendle and L. Schmidt-Thieme. Pairwise interaction tensor factorization for personalized tag recommendation. ACM International Conference on Web Search and Data Mining, pp. 81–90, 2010.Google Scholar
  37. [516]
    T. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramabhadran. Low-rank matrix factorization for deep neural network training with high-dimensional output targets. Acoustics, Speech and Signal Processing (ICASSP), pp. 6655–6659, 2013.Google Scholar
  38. [519]
    R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted Boltzmann machines for collaborative filtering. International conference on Machine Learning, pp. 791–798, 2007.Google Scholar
  39. [605]
    L. Tucker. Some mathematical notes on three-model factor analysis. Psychometrika, 31, pp. 279–311, 1966.MathSciNetCrossRefGoogle Scholar
  40. [607]
    A. Umyarov, and A. Tuzhilin. Using external aggregate ratings for improving individual recommendations. ACM Transactions on the Web (TWEB), 5(1), 3, 2011.Google Scholar
  41. [612]
    K. Verbert, N. Manouselis, X. Ochoa, M. Wolpers, H. Drachsler, I. Bosnic, and E. Duval. Context-aware recommender systems for learning: a survey and future challenges. IEEE Transactions on Learning Technologies, 5(4), pp. 318–335, 2012.CrossRefGoogle Scholar
  42. [715]

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.IBM T.J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations