Context-Sensitive Recommender Systems

  • Charu C. Aggarwal


For me context is the key – from that comes the understanding


  1. [2]
    G. Abowd, C. Atkeson, J. Hong, S. Long, R. Kooper, and M. Pinkerton. Cyberguide: A mobile context-aware tour guide. Wireless Networks, 3(5), pp. 421–433, 1997.CrossRefGoogle Scholar
  2. [3]
    G. Abowd, A. Dey, P. Brown, N. Davies, M. Smith, and P. Steggles. Towards a better understanding of context and context-awareness. Handheld and Ubiquitous Computing, pp. 304–307, 1999.Google Scholar
  3. [5]
    G. Adomavicius, and A. Tuzhilin. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), pp. 734–749, 2005.CrossRefGoogle Scholar
  4. [6]
    G. Adomavicius, R. Sankaranarayanan, S. Sen, and A. Tuzhilin. Incorporating contextual information in recommender systems using a multidimensional approach. ACM Transactions on Information Systems, 23(1), pp. 103–145, 2005.CrossRefGoogle Scholar
  5. [7]
    G. Adomavicius and A. Tuzhilin. Context-aware recommender systems. Recommender Systems handbook, pp. 217–253, Springer, NY, 2011.Google Scholar
  6. [8]
    G. Adomavicius and A. Tuzhilin. Incorporating context into recommender systems using multidimensional rating estimation methods. International Workshop on Web Personalization, Recommender Systems and Intelligent User Interfaces (WPRSIUI), 2005.Google Scholar
  7. [9]
    G. Adomavicius and A. Tuzhilin. Multidimensional recommender systems: a data warehousing approach. International Workshop on Electronic Commerce. Lecture Notes in Computer Science, Springer, Vol. 2232, pp. 180–192, 2001.Google Scholar
  8. [10]
    G. Adomavicius, A. Tuzhilin, and R. Zheng. REQUEST: A query language for customizing recommendations. Information Systems Research, 22(1), pp. 99–117, 2011.CrossRefGoogle Scholar
  9. [18]
    C. Aggarwal. Data classification: algorithms and applications. CRC Press, 2014.Google Scholar
  10. [22]
    C. Aggarwal. Data mining: the textbook. Springer, New York, 2015.Google Scholar
  11. [39]
    R. Agrawal, R. Rantzau, and E. Terzi. Context-sensitive ranking. ACM SIGMOD Conference, pp. 383–394, 2006.Google Scholar
  12. [40]
    H. Ahn, K. Kim, and I. Han. Mobile advertisement recommender system using collaborative filtering: MAR-CF. Proceedings of the 2006 Conference of the Korea Society of Management Information Systems, 2006.Google Scholar
  13. [47]
    S. Anand and B. Mobasher. Contextual recommendation, Lecture Notes in Artificial Intelligence, Springer, 4737, pp. 142–160, 2007.Google Scholar
  14. [50]
    A. Ansari, S. Essegaier, and R. Kohli. Internet recommendation systems. Journal of Marketing Research, 37(3), pp. 363–375, 2000.CrossRefGoogle Scholar
  15. [61]
    L. Baltrunas and X. Amatriain. Towards time-dependant recommendation based on implicit feedback. RecSys Workshop on Context-Aware Recommender Systems, 2009.Google Scholar
  16. [62]
    L. Baltrunas and F. Ricci. Context-dependant items generation in collaborative filtering. RecSys Workshop on Context-Aware Recommender Systems, 2009.Google Scholar
  17. [63]
    L. Baltrunas, B. Ludwig, and F. Ricci. Matrix factorization techniques for context aware recommendation. ACM Conference on Recommender systems, pp. 301–304, 2011.Google Scholar
  18. [134]
    I. Cantador and P. Castells. Semantic contextualisation in a news recommender system. Workshop on Context-Aware Recommender Systems, 2009.Google Scholar
  19. [145]
    S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology. ACM SIGMOD Record, 26(1), pp. 65–74, 1997.CrossRefGoogle Scholar
  20. [147]
    G. Chen and D. Kotz. A survey of context-aware mobile computing research. Technical Report TR2000-381, Department of Computer Science, Dartmouth College, 2000.Google Scholar
  21. [151]
    T. Chen, Z. Zheng, Q. Lu, W. Zhang, and Y. Yu. Feature-based matrix factorization. arXiv preprint arXiv:1109.2271, 2011.Google Scholar
  22. [188]
    P. Dourish, What we talk about when we talk about context. Personal and ubiquitous computing, 8(1), pp. 19–30, 2004.CrossRefGoogle Scholar
  23. [212]
    Z. Gantner, S. Rendle, and L. Schmidt-Thieme. Factorization models for context-/time-aware movie recommendations. Workshop on Context-Aware Movie Recommendation, pp. 14–19, 2010.Google Scholar
  24. [294]
    A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver. Multiverse recommendation: N-dimensional tensor factorization for context-aware collaborative filtering. ACM Conference on Recommender Systems, pp. 79–86, 2010.Google Scholar
  25. [332]
    L. Lathauwer, B. Moor, and J. Vandewalle. A multilinear singular value decomposition. SIAM Journal on Matrix Analysis and Applications, 21(4), pp. 1253–1278. 2000.MathSciNetCrossRefMATHGoogle Scholar
  26. [336]
    S. Lawrence. Context in Web search. IEEE Data Engineering Bulletin, 23(3):25, 2000.Google Scholar
  27. [374]
    S. Lombardi, S. Anand, and M. Gorgoglione. Context and customer behaviour in recommendation. Workshop on Customer Aware Recommender Systems, 2009.Google Scholar
  28. [458]
    K. Oku, S. Nakajima, J. Miyazaki, and S. Uemura. Context-aware SVM for context-dependent information recommendation. International Conference on Mobile Data Management, pp. 109–109, 2006.Google Scholar
  29. [466]
    C. Palmisano, A. Tuzhilin, and M. Gorgoglione. Using context to improve predictive modeling of customers in personalization applications. IEEE Transactions on Knowledge and Data Engineering, 20(11), pp. 1535–1549, 2008.CrossRefGoogle Scholar
  30. [470]
    U. Panniello, A. Tuzhilin, and M. Gorgoglione. Comparing context-aware recommender systems in terms of accuracy and diversity. User Modeling and User-Adapted Interaction, 24: pp. 35–65, 2014.CrossRefGoogle Scholar
  31. [471]
    U. Panniello, A. Tuzhilin, M. Gorgoglione, C. Palmisano, and A. Pedone. Experimental comparison of pre- vs. post-filtering approaches in context-aware recommender systems. ACM Conference on Recommender Systems, pp. 265–268, 2009.Google Scholar
  32. [493]
    S. Rendle. Factorization machines. IEEE International Conference on Data Mining, pp. 995–100, 2010.Google Scholar
  33. [494]
    S. Rendle. Factorization machines with libfm. ACM Transactions on Intelligent Systems and Technology (TIST), 3(3), 57, 2012.Google Scholar
  34. [495]
    S. Rendle. Context-aware ranking with factorization models. Studies in Computational Intelligence, Chapter 9, Springer, 2011.Google Scholar
  35. [496]
    S. Rendle, Z. Gantner, C. Freudenthaler, and L. Schmidt-Thieme. Fast context-aware recommendations with factorization machines. ACM SIGIR Conference, pp. 635–644, 2011.Google Scholar
  36. [498]
    S. Rendle and L. Schmidt-Thieme. Pairwise interaction tensor factorization for personalized tag recommendation. ACM International Conference on Web Search and Data Mining, pp. 81–90, 2010.Google Scholar
  37. [516]
    T. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramabhadran. Low-rank matrix factorization for deep neural network training with high-dimensional output targets. Acoustics, Speech and Signal Processing (ICASSP), pp. 6655–6659, 2013.Google Scholar
  38. [519]
    R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted Boltzmann machines for collaborative filtering. International conference on Machine Learning, pp. 791–798, 2007.Google Scholar
  39. [605]
    L. Tucker. Some mathematical notes on three-model factor analysis. Psychometrika, 31, pp. 279–311, 1966.MathSciNetCrossRefGoogle Scholar
  40. [607]
    A. Umyarov, and A. Tuzhilin. Using external aggregate ratings for improving individual recommendations. ACM Transactions on the Web (TWEB), 5(1), 3, 2011.Google Scholar
  41. [612]
    K. Verbert, N. Manouselis, X. Ochoa, M. Wolpers, H. Drachsler, I. Bosnic, and E. Duval. Context-aware recommender systems for learning: a survey and future challenges. IEEE Transactions on Learning Technologies, 5(4), pp. 318–335, 2012.CrossRefGoogle Scholar
  42. [715]

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Charu C. Aggarwal
    • 1
  1. 1.IBM T.J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations