[13]

D. Agarwal, and B. Chen. Regression-based latent factor models. *ACM KDD Conference*, pp. 19–28. 2009.

[18]

C. Aggarwal. Data classification: algorithms and applications. *CRC Press*, 2014.

[22]

C. Aggarwal. Data mining: the textbook. *Springer*, New York, 2015.

[23]

C. Aggarwal and J. Han. Frequent pattern mining. *Springer*, New York, 2014.

[24]

C. Aggarwal and S. Parthasarathy. Mining massively incomplete data sets by conceptual reconstruction. *ACM KDD Conference*, pp. 227–232, 2001.

[25]

C. Aggarwal, C. Procopiuc, and P. S. Yu. Finding localized associations in market basket data.

*IEEE Transactions on Knowledge and Data Engineering*, 14(1), pp. 51–62, 2001.

CrossRef[31]

C. Aggarwal, Z. Sun, and P. Yu. Online generation of profile association rules. *ACM KDD Conference*, pp. 129–133, 1998.

[32]

C. Aggarwal, Z. Sun, and P. Yu. Online algorithms for finding profile association rules, *CIKM Conference*, pp. 86–95, 1998.

[58]

R. Battiti. Accelerated backpropagation learning: Two optimization methods.

*Complex Systems*, 3(4), pp. 331–342, 1989.

MATH[72]

R. Bell and Y. Koren. Scalable collaborative filtering with jointly derived neighborhood interpolation weights. *IEEE International Conference on Data Mining*, pp. 43–52, 2007.

[73]

R. Bell and Y. Koren. Lessons from the Netflix prize challenge.

*ACM SIGKDD Explorations Newsletter*, 9(2), pp. 75–79, 2007.

CrossRef[76]

D. P. Bertsekas. Nonlinear programming. *Athena Scientific Publishers*, Belmont, 1999.

[82]

D. Billsus and M. Pazzani. Learning collaborative information filters. *ICML Conference*, pp. 46–54, 1998.

[87]

C. M. Bishop. Neural networks for pattern recognition. *Oxford University Press*, 1995.

[96]

M. Brand. Fast online SVD revisions for lightweight recommender systems. *SIAM Conference on Data Mining*, pp. 37–46, 2003.

[127]

J. Cai, E. Candes, and Z. Shen. A singular value thresholding algorithm for matrix completion. *SIAM Journal on Optimization*, 20(4), 1956–1982, 2010.

[133]

J. Canny. Collaborative filtering with privacy via factor analysis. *ACM SIGR Conference*, pp. 238–245, 2002.

[151]

T. Chen, Z. Zheng, Q. Lu, W. Zhang, and Y. Yu. Feature-based matrix factorization. *arXiv preprint* arXiv:1109.2271, 2011.

[161]

A. Cichocki and R. Zdunek. Regularized alternating least squares algorithms for non-negative matrix/tensor factorization. *International Symposium on Neural Networks*, pp. 793–802. 2007.

[180]

D. DeCoste. Collaborative prediction using ensembles of maximum margin matrix factorizations. *International Conference on Machine Learning*, pp. 249–256, 2006.

[184]

R. Devooght, N. Kourtellis, and A. Mantrach. Dynamic matrix factorization with priors on unknown values. *ACM KDD Conference*, 2015.

[217]

R. Gemulla, E. Nijkamp, P. Haas, and Y. Sismanis. Large-scale matrix factorization with distributed stochastic gradient descent. *ACM KDD Conference*, pp. 69–77, 2011.

[219]

L. Getoor and M. Sahami. Using probabilistic relational models for collaborative filtering. *Workshop on Web Usage Analysis and User Profiling*, 1999.

[220]

F. Girosi, M. Jones, and T. Poggio. Regularization theory and neural networks architectures.

*Neural Computation*, 2(2), pp. 219–269, 1995.

CrossRef[252]

T. Hofmann. Latent semantic models for collaborative filtering.

*ACM Transactions on Information Systems (TOIS)*, 22(1), pp. 89–114, 2004.

CrossRef[260]

Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. *IEEE International Conference on Data Mining*, pp. 263–272, 2008.

[267]

P. Jain and I. Dhillon. Provable inductive matrix completion.

*arXiv preprint arXiv:1306.0626*
http://arxiv.org/abs/1306.0626.

[268]

P. Jain, P. Netrapalli, and S. Sanghavi. Low-rank matrix completion using alternating minimization. *ACM Symposium on Theory of Computing*, pp. 665–674, 2013.

[300]

D. Kim, and B. Yum. Collaborative filtering Based on iterative principal component analysis, *Expert Systems with Applications*, 28, pp. 623–830, 2005.

[301]

H. Kim and H. Park. Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method.

*SIAM Journal on Matrix Analysis and Applications*, 30(2), pp. 713–730, 2008.

MathSciNetCrossRefMATH[309]

Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model. *ACM KDD Conference*, pp. 426–434, 2008. Extended version of this paper appears as: “Y. Koren. Factor in the neighbors: Scalable and accurate collaborative filtering. *ACM Transactions on Knowledge Discovery from Data (TKDD)*, 4(1), 1, 2010.”

[310]

Y. Koren. Collaborative filtering with temporal dynamics. *ACM KDD Conference*, pp. 447–455, 2009. Another version also appears in the *Communications of the ACM,*, 53(4), pp. 89–97, 2010.

[311]

Y. Koren. The Bellkor solution to the Netflix grand prize.

*Netflix prize documentation*, 81, 2009.

http://www.netflixprize.com/assets/GrandPrize2009_BPC_BellKor.pdf
[312]

Y. Koren and R. Bell. Advances in collaborative filtering. *Recommender Systems Handbook*, Springer, pp. 145–186, 2011. (Extended version in 2015 edition of handbook).

[313]

Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems.

*Computer*, 42(8), pp. 30–37, 2009.

CrossRef[321]

S. Kabbur, X. Ning, and G. Karypis. FISM: factored item similarity models for top-N recommender systems. *ACM KDD Conference*, pp. 659–667, 2013.

[322]

S. Kabbur and G. Karypis. NLMF: NonLinear Matrix Factorization Methods for Top-N Recommender Systems. *IEEE Data Mining Workshop (ICDMW)*, pp. 167–174, 2014.

[331]

A. Langville, C. Meyer, R. Albright, J. Cox, and D. Duling. Initializations for the nonnegative matrix factorization. *ACM KDD Conference*, pp. 23–26, 2006.

[342]

D. Lemire and A. Maclachlan. Slope one predictors for online rating-based collaborative filtering. *SIAM Conference on Data Mining*, 2005.

[351]

M. Li, T. Zhang, Y. Chen, and A. Smola. Efficient mini-batch training for stochastic optimization. *ACM KDD Conference*, pp. 661–670, 2014.

[357]

C.-J. Lin. Projected gradient methods for nonnegative matrix factorization.

*Neural Computation*, 19(10), pp. 2576–2779, 2007.

MathSciNetCrossRef[358]

W. Lin. Association rule mining for collaborative recommender systems. *Masters Thesis*, Worcester Polytechnic Institute, 2000.

[359]

W. Lin, S. Alvarez, and C. Ruiz. Efficient adaptive-support association rule mining for recommender systems.

*Data Mining and Knowledge Discovery*, 6(1), pp. 83–105, 2002.

MathSciNetCrossRef[365]

B. Liu, W. Hsu, and Y. Ma. Mining association rules with multiple minimum supports. *ACM KDD Conference*, pp. 337–341, 1999.

[371]

X. Liu, C. Aggarwal, Y.-F. Lee, X. Kong, X. Sun, and S. Sathe. Kernelized matrix factorization for collaborative filtering. *SIAM Conference on Data Mining*, 2016.

[434]

A. Mild and M. Natter. Collaborative filtering or regression models for Internet recommendation systems?.

*Journal of Targeting, Measurement and Analysis for Marketing*, 10(4), pp. 304–313, 2002.

CrossRef[437]

K. Miyahara, and M. J. Pazzani. Collaborative filtering with the simple Bayesian classifier. *Pacific Rim International Conference on Artificial Intelligence*, 2000.

[441]

B. Mobasher, H. Dai, T. Luo, and M. Nakagawa. Effective personalization based on association rule discovery from Web usage data. *ACM Workshop on Web Information and Data Management*, pp. 9–15, 2001.

[455]

X. Ning and G. Karypis. SLIM: Sparse linear methods for top-N recommender systems. *IEEE International Conference on Data Mining*, pp. 497–506, 2011.

[457]

D. Oard and J. Kim. Implicit feedback for recommender systems. *Proceedings of the AAAI Workshop on Recommender Systems*, pp. 81–83, 1998.

[460]

P. Paatero and U. Tapper. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values.

*Environmetrics*, 5(2), pp. 111–126, 1994.

CrossRef[467]

R. Pan, Y. Zhou, B. Cao, N. Liu, R. Lukose, M. Scholz, Q. Yang. One-class collaborative filtering. *IEEE International Conference on Data Mining*, pp. 502–511, 2008.

[468]

R. Pan, and M. Scholz. Mind the gaps: weighting the unknown in large-scale one-class collaborative filtering. *ACM KDD Conference*, pp. 667–676, 2009.

[472]

S. Parthasarathy and C. Aggarwal. On the use of conceptual reconstruction for mining massively incomplete data sets.

*IEEE Transactions on Knowledge and Data Engineering*, 15(6), pp. 1512–1521, 2003.

CrossRef[473]

A. Paterek. Improving regularized singular value decomposition for collaborative filtering. *Proceedings of KDD Cup and Workshop*, 2007.

[474]

V. Pauca, J. Piper, and R. Plemmons. Nonnegative matrix factorization for spectral data analysis.

*Linear algebra and its applications*, 416(1), pp. 29–47, 2006.

MathSciNetCrossRefMATH[493]

S. Rendle. Factorization machines. *IEEE International Conference on Data Mining*, pp. 995–100, 2010.

[500]

J. Rennie and N. Srebro. Fast maximum margin matrix factorization for collaborative prediction. *ICML Conference*, pp. 713–718, 2005.

[517]

R. Salakhutdinov, and A. Mnih. Probabilistic matrix factorization. *Advances in Neural and Information Processing Systems*, pp. 1257–1264, 2007.

[518]

R. Salakhutdinov, and A. Mnih. Bayesian probabilistic matrix factorization using Markov chain Monte Carlo. *International Conference on Machine Learning*, pp. 880–887, 2008.

[519]

R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted Boltzmann machines for collaborative filtering. *International conference on Machine Learning*, pp. 791–798, 2007.

[524]

B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering recommendation algorithms. *World Wide Web Conference*, pp. 285–295, 2001.

[525]

B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Application of dimensionality reduction in recommender system – a case study.

*WebKDD Workshop at ACM SIGKDD Conference, 2000*. Also appears at

*Technical Report TR-00-043*, University of Minnesota, Minneapolis, 2000.

https://wwws.cs.umn.edu/tech_reports_upload/tr2000/00-043.pdf
[537]

D. Seung, and L. Lee. Algorithms for non-negative matrix factorization. *Advances in Neural Information Processing Systems*, 13, pp. 556–562, 2001.

[541]

H. Shen and J. Z. Huang. Sparse principal component analysis via regularized low rank matrix approximation.

*Journal of multivariate analysis*. 99(6), pp. 1015–1034, 2008.

MathSciNetCrossRefMATH[552]

M.-L. Shyu, C. Haruechaiyasak, S.-C. Chen, and N. Zhao. Collaborative filtering by mining association rules from user access sequences. *Workshop on Challenges in Web Information Retrieval and Integration*, pp. 128–135, 2005.

[568]

G. Strang. An introduction to linear algebra. *Wellesley Cambridge Press*, 2009.

[569]

N. Srebro, J. Rennie, and T. Jaakkola. Maximum-margin matrix factorization. *Advances in neural information processing systems*, pp. 1329–1336, 2004.

[571]

X. Su, T. Khoshgoftaar, X. Zhu, and R. Greiner. Imputation-boosted collaborative filtering using machine learning classifiers. *ACM symposium on Applied computing*, pp. 949–950, 2008.

[586]

G. Takacs, I. Pilaszy, B. Nemeth, and D. Tikk. Matrix factorization and neighbor based algorithms for the Netflix prize problem. *ACM Conference on Recommender Systems*, pp. 267–274, 2008.

[620]

S. Vucetic and Z. Obradovic. Collaborative filtering using a regression-based approach.

*Knowledge and Information Systems*, 7(1), pp. 1–22, 2005.

CrossRef[624]

M. Weimer, A. Karatzoglou, Q. Le, and A. Smola. CoFiRank: Maximum margin matrix factorization for collaborative ranking. *Advances in Neural Information Processing Systems*, 2007.

[629]

S. Wild, J. Curry, and A. Dougherty. Improving non-negative matrix factorizations through structured initialization.

*Pattern Recognition*, 37(11), pp. 2217–2232, 2004.

CrossRef[638]

Z. Xia, Y. Dong, and G. Xing. Support vector machines for collaborative filtering. *Proceedings of the 44th Annual Southeast Regional Conference*, pp. 169–174, 2006.

[650]

H. F. Yu, C. Hsieh, S. Si, and I. S. Dhillon. Scalable coordinate descent approaches to parallel matrix factorization for recommender systems. *IEEE International Conference on Data Mining*, pp. 765–774, 2012.

[651]

K. Yu, S. Zhu, J. Lafferty, and Y. Gong. Fast nonparametric matrix factorization for large-scale collaborative filtering. *ACM SIGIR Conference*, pp. 211–218, 2009.

[666]

S. Zhang, W. Wang, J. Ford, and F. Makedon. Learning from incomplete ratings using nonnegative matrix factorization. *SIAM Conference on Data Mining*, pp. 549–553, 2006.

[669]

T. Zhang and V. Iyengar. Recommender systems using linear classifiers.

*Journal of Machine Learning Research*, 2, pp. 313–334, 2002.

MATH[676]

K. Zhou, S. Yang, and H. Zha. Functional matrix factorizations for cold-start recommendation. *ACM SIGIR Conference*, pp. 315–324, 2011.

[677]

Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. Large-scale parallel collaborative filtering for the Netflix prize. *Algorithmic Aspects in Information and Management*, pp. 337–348, 2008.

[679]

C. Ziegler. Applying feed-forward neural networks to collaborative filtering, Master’s Thesis, Universitat Freiburg, 2006.

[704]