Advertisement

Energy pp 419-440 | Cite as

Energy Coupling

  • Yaşar DemirelEmail author
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

Various mechanisms and devices facilitate that an energy-producing process may drive another process requiring energy if energy coupling takes place between these processes.

Keywords

Gibbs Free Energy Oxidative Phosphorylation Electron Transport Chain Basal Metabolic Rate Adenosine Triphosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, Walter P (2014) Molecular biology of the cell, 6th edn. Garland, New YorkGoogle Scholar
  2. 2.
    Andrews AJ, Luger K (2010) A coupled equilibrium approach to study nucleosome thermodynamics. Methods Enzymol 488:265–285CrossRefGoogle Scholar
  3. 3.
    Andriesse CD, Hollestelle MJ (2001) Minimum entropy production in photosynthesis. Biophys Chem 90:249–253CrossRefGoogle Scholar
  4. 4.
    Caplan RS, Essig A (1999) Bioenergetics and linear nonequilibrium thermodynamics. The steady state. Harvard University Press, New YorkGoogle Scholar
  5. 5.
    Demirel Y (2004) Exergy use in bioenergetics. Int J Exergy 1:128–146CrossRefGoogle Scholar
  6. 6.
    Demirel Y (2012) Energy coupling. In: Terzis G, Arp R (eds) Information and living systems in philosophical and scientific perspectives. MIT Press, Cambridge, pp 25–53Google Scholar
  7. 7.
    Demirel Y (2014) Nonequilibrium thermodynamics: transport and rate processes in physical, chemical and biological systems, 3rd edn. Elsevier, AmsterdamzbMATHGoogle Scholar
  8. 8.
    Demirel Y, Sandler SI (2002) Thermodynamics and bioenergetics. Biophys Chem 97:87–111CrossRefGoogle Scholar
  9. 9.
    Garby L, Larsen PS (1995) Bioenergetics. Cambridge, New YorkGoogle Scholar
  10. 10.
    Küçük K, Tevatia R, Sorgüven E, Demirel Y, Özilgen M (2015) Bioenergetics of growth and lipid production in Chlamydomonas reinhardtii. Energy 83:503–510CrossRefGoogle Scholar
  11. 11.
    Marks DB (1999) Biochemistry. Kluwer, New YorkGoogle Scholar
  12. 12.
    Schäfer G, Penefsky H (eds) (2010) Bioenergetics: energy conservation and conversion. Springer, BerlinGoogle Scholar
  13. 13.
    Soboll S (1995) Regulation of energy metabolism in liver. J Bioenerg Biomembr 27:571–582CrossRefGoogle Scholar
  14. 14.
    Stucki JW (1991) Non-equilibrium thermodynamic sensitivity of oxidative phosphorylation. Proc Biol Sci 244:197–202CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of Nebraska LincolnLincolnUSA

Personalised recommendations